NIR-II Ratiometric Optical Theranostic Capsule for In Situ Diagnosis and Precise Therapy of Intestinal Inflammation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-11 DOI:10.1021/acsnano.4c12894
Kang Zhu, Xing Liu, Liping Fu, Jingjing Cao, Ying Wu, Chunxiang Mo, Jing Mu, Jibin Song
{"title":"NIR-II Ratiometric Optical Theranostic Capsule for In Situ Diagnosis and Precise Therapy of Intestinal Inflammation","authors":"Kang Zhu, Xing Liu, Liping Fu, Jingjing Cao, Ying Wu, Chunxiang Mo, Jing Mu, Jibin Song","doi":"10.1021/acsnano.4c12894","DOIUrl":null,"url":null,"abstract":"Capsules were widely used in clinical settings for the oral delivery of various drugs, although it remains challenging to trace real-time drug release behavior and adjust dosages based on the therapeutic effect. To address these issues, we developed theranostic capsules that loaded two kinds of fluorescence nanoparticles, H<sub>2</sub>O<sub>2</sub>-responsive Janus Ag/Ag<sub>2</sub>S nanoparticles (Ag/Ag<sub>2</sub>S JNPs) and the downconversion nanoparticles (DCNPs), and the dexamethasone (Dex) drug. The Ag/Ag<sub>2</sub>S JNPs exhibit a highly sensitive fluorescence (FL) signal at 1250 nm in response to H<sub>2</sub>O<sub>2</sub>, while the FL signal from the DCNPs at 1550 nm remains stable under physiological conditions. The ratio of these two FL signals formed the ratiometric FL signal, which shows correlation with the H<sub>2</sub>O<sub>2</sub> concentration with a detection limit of 1.7 μM. Moreover, the capsules can be precisely delivered into the intestine, where they release the JNPs and DCNPs simultaneously. The H<sub>2</sub>O<sub>2</sub>-triggered ratiometric FL signals and images can diagnose inflammation and indicate its location. Meanwhile, the encapsulated Dex is released in the disease region, with ratiometric imaging allowing for real-time tracking of therapeutic efficacy and providing guidance for ongoing treatment. The theranostic capsule system provides an approach for quantitative detection of disease biomarkers and further localized release of therapeutics, thereby avoiding overdose and reducing side effects.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"21 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12894","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Capsules were widely used in clinical settings for the oral delivery of various drugs, although it remains challenging to trace real-time drug release behavior and adjust dosages based on the therapeutic effect. To address these issues, we developed theranostic capsules that loaded two kinds of fluorescence nanoparticles, H2O2-responsive Janus Ag/Ag2S nanoparticles (Ag/Ag2S JNPs) and the downconversion nanoparticles (DCNPs), and the dexamethasone (Dex) drug. The Ag/Ag2S JNPs exhibit a highly sensitive fluorescence (FL) signal at 1250 nm in response to H2O2, while the FL signal from the DCNPs at 1550 nm remains stable under physiological conditions. The ratio of these two FL signals formed the ratiometric FL signal, which shows correlation with the H2O2 concentration with a detection limit of 1.7 μM. Moreover, the capsules can be precisely delivered into the intestine, where they release the JNPs and DCNPs simultaneously. The H2O2-triggered ratiometric FL signals and images can diagnose inflammation and indicate its location. Meanwhile, the encapsulated Dex is released in the disease region, with ratiometric imaging allowing for real-time tracking of therapeutic efficacy and providing guidance for ongoing treatment. The theranostic capsule system provides an approach for quantitative detection of disease biomarkers and further localized release of therapeutics, thereby avoiding overdose and reducing side effects.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信