Nanozyme as Tumor Energy Homeostasis Disruptor to Augment Cascade Catalytic Therapy

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-11 DOI:10.1021/acsnano.4c09982
Xingchen Li, Xia Zhang, Lei Song, Yuan Li, Annan Liu, Lei Li, Maja D. Nešić, Dan Li, Liping Peng, Chunyan Wang, Quan Lin
{"title":"Nanozyme as Tumor Energy Homeostasis Disruptor to Augment Cascade Catalytic Therapy","authors":"Xingchen Li, Xia Zhang, Lei Song, Yuan Li, Annan Liu, Lei Li, Maja D. Nešić, Dan Li, Liping Peng, Chunyan Wang, Quan Lin","doi":"10.1021/acsnano.4c09982","DOIUrl":null,"url":null,"abstract":"Breaking the balance of the tumor microenvironment and reshaping it sustainably remain major challenges in lung cancer treatment. Here, a “tumor energy homeostasis disruptor”, the Cu<sub>2</sub>O@Au nanozyme was developed, which exhibits excellent glucose oxidase-like activity, enabling it to be used for starvation therapy and as a mimic peroxidase for chemodynamic therapy (CDT), producing <sup>•</sup>OH. Cu<sub>2</sub>O@Au nanozymes consume glucose at the tumor site to block the tumor’s energy supply, produce H<sub>2</sub>O<sub>2</sub> continuously, and lower the pH to enhance the efficiency of CDT, initiating a cascade reaction that leads to a storm of reactive oxygen species (ROS). Furthermore, Cu<sub>2</sub>O@Au nanozyme consumes glutathione and reduces the expression of the SLC7A11 (<i>x</i>CT) protein to decrease cancer cell uptake of cysteine, further enhancing the burst of ROS, resulting in lipid peroxidation in tumor cells and ultimately leading to ferroptosis. The excellent photothermal performance of Cu<sub>2</sub>O@Au can further enhance CDT. Additionally, Cu<sub>2</sub>O@Au nanozyme also has computed tomography (CT) and photothermal imaging capabilities. In conclusion, Cu<sub>2</sub>O@Au nanozymes, acting as tumor energy homeostasis disruptor, can effectively inhibit tumor growth and successfully achieve the synergistic effects of starvation therapy/CDT/photothermal therapy (PTT). This multifunctional nanozyme holds promise for providing valuable insights and therapeutic strategies for cancer treatment.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09982","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Breaking the balance of the tumor microenvironment and reshaping it sustainably remain major challenges in lung cancer treatment. Here, a “tumor energy homeostasis disruptor”, the Cu2O@Au nanozyme was developed, which exhibits excellent glucose oxidase-like activity, enabling it to be used for starvation therapy and as a mimic peroxidase for chemodynamic therapy (CDT), producing OH. Cu2O@Au nanozymes consume glucose at the tumor site to block the tumor’s energy supply, produce H2O2 continuously, and lower the pH to enhance the efficiency of CDT, initiating a cascade reaction that leads to a storm of reactive oxygen species (ROS). Furthermore, Cu2O@Au nanozyme consumes glutathione and reduces the expression of the SLC7A11 (xCT) protein to decrease cancer cell uptake of cysteine, further enhancing the burst of ROS, resulting in lipid peroxidation in tumor cells and ultimately leading to ferroptosis. The excellent photothermal performance of Cu2O@Au can further enhance CDT. Additionally, Cu2O@Au nanozyme also has computed tomography (CT) and photothermal imaging capabilities. In conclusion, Cu2O@Au nanozymes, acting as tumor energy homeostasis disruptor, can effectively inhibit tumor growth and successfully achieve the synergistic effects of starvation therapy/CDT/photothermal therapy (PTT). This multifunctional nanozyme holds promise for providing valuable insights and therapeutic strategies for cancer treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信