{"title":"Magnetic Resonance Imaging-Based Radiogenomic Analysis Reveals Genomic Determinants for Nanoparticle Delivery into Tumors","authors":"Di Liu, Na Lu, Fengchao Zang, Mingze Lu, Jingyue Zhang, Ying Zhao, Hao Wan, Mengjun Wang, Qian-Qian Li, Fei Wang, Shouhua Luo, Ming Ma, Fangfang Shi, Haoan Wu, Jing Tu, Yu Zhang","doi":"10.1021/acsnano.4c09387","DOIUrl":null,"url":null,"abstract":"Even though the enhanced permeability and retention (EPR) effect is applicable for the passive targeting of solid tumors, many nanodrugs have failed to achieve meaningful clinical outcomes due to the heterogeneity of EPR effect. Therefore, understanding the mechanism of the EPR effect is crucial to overcome the obstacles nanomedicines face in clinical translation. The aim of this study was to establish a reliable method to increase awareness of the critical influencing factors of nanoparticle (NP) transport into tumors based on the EPR effect using a combined radiogenomics and clinical magnetic resonance imaging (MRI) technique and gene set pathway enrichment analysis. Employing poly(lactic-<i>co</i>-glycolic acid) (PLGA)-coated Fe<sub>3</sub>O<sub>4</sub> NPs as the contrast agent, the monolayer and multilayer distribution of the NPs were observed and quantitatively analyzed by MRI, improving the accuracy of evaluating vascular permeability by MRI. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes and pathways, we identified a variety of genes affecting vascular permeability, such as Cldn1, Dlg2, Bves, Prkag3, Cldn10, and Cldn8, which are related to tight junctions and control the permeability of blood vessels in tumors. The method presented here provides an MRI-supported approach to increase the breadth of data collected from genetic screens, reveals genetic evidence of the presence of NPs in tumors and lays a foundation for clinical patient stratification and personalized treatment.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"7 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09387","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Even though the enhanced permeability and retention (EPR) effect is applicable for the passive targeting of solid tumors, many nanodrugs have failed to achieve meaningful clinical outcomes due to the heterogeneity of EPR effect. Therefore, understanding the mechanism of the EPR effect is crucial to overcome the obstacles nanomedicines face in clinical translation. The aim of this study was to establish a reliable method to increase awareness of the critical influencing factors of nanoparticle (NP) transport into tumors based on the EPR effect using a combined radiogenomics and clinical magnetic resonance imaging (MRI) technique and gene set pathway enrichment analysis. Employing poly(lactic-co-glycolic acid) (PLGA)-coated Fe3O4 NPs as the contrast agent, the monolayer and multilayer distribution of the NPs were observed and quantitatively analyzed by MRI, improving the accuracy of evaluating vascular permeability by MRI. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes and pathways, we identified a variety of genes affecting vascular permeability, such as Cldn1, Dlg2, Bves, Prkag3, Cldn10, and Cldn8, which are related to tight junctions and control the permeability of blood vessels in tumors. The method presented here provides an MRI-supported approach to increase the breadth of data collected from genetic screens, reveals genetic evidence of the presence of NPs in tumors and lays a foundation for clinical patient stratification and personalized treatment.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.