Magnetic Resonance Imaging-Based Radiogenomic Analysis Reveals Genomic Determinants for Nanoparticle Delivery into Tumors

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-12 DOI:10.1021/acsnano.4c09387
Di Liu, Na Lu, Fengchao Zang, Mingze Lu, Jingyue Zhang, Ying Zhao, Hao Wan, Mengjun Wang, Qian-Qian Li, Fei Wang, Shouhua Luo, Ming Ma, Fangfang Shi, Haoan Wu, Jing Tu, Yu Zhang
{"title":"Magnetic Resonance Imaging-Based Radiogenomic Analysis Reveals Genomic Determinants for Nanoparticle Delivery into Tumors","authors":"Di Liu, Na Lu, Fengchao Zang, Mingze Lu, Jingyue Zhang, Ying Zhao, Hao Wan, Mengjun Wang, Qian-Qian Li, Fei Wang, Shouhua Luo, Ming Ma, Fangfang Shi, Haoan Wu, Jing Tu, Yu Zhang","doi":"10.1021/acsnano.4c09387","DOIUrl":null,"url":null,"abstract":"Even though the enhanced permeability and retention (EPR) effect is applicable for the passive targeting of solid tumors, many nanodrugs have failed to achieve meaningful clinical outcomes due to the heterogeneity of EPR effect. Therefore, understanding the mechanism of the EPR effect is crucial to overcome the obstacles nanomedicines face in clinical translation. The aim of this study was to establish a reliable method to increase awareness of the critical influencing factors of nanoparticle (NP) transport into tumors based on the EPR effect using a combined radiogenomics and clinical magnetic resonance imaging (MRI) technique and gene set pathway enrichment analysis. Employing poly(lactic-<i>co</i>-glycolic acid) (PLGA)-coated Fe<sub>3</sub>O<sub>4</sub> NPs as the contrast agent, the monolayer and multilayer distribution of the NPs were observed and quantitatively analyzed by MRI, improving the accuracy of evaluating vascular permeability by MRI. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes and pathways, we identified a variety of genes affecting vascular permeability, such as Cldn1, Dlg2, Bves, Prkag3, Cldn10, and Cldn8, which are related to tight junctions and control the permeability of blood vessels in tumors. The method presented here provides an MRI-supported approach to increase the breadth of data collected from genetic screens, reveals genetic evidence of the presence of NPs in tumors and lays a foundation for clinical patient stratification and personalized treatment.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"7 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09387","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Even though the enhanced permeability and retention (EPR) effect is applicable for the passive targeting of solid tumors, many nanodrugs have failed to achieve meaningful clinical outcomes due to the heterogeneity of EPR effect. Therefore, understanding the mechanism of the EPR effect is crucial to overcome the obstacles nanomedicines face in clinical translation. The aim of this study was to establish a reliable method to increase awareness of the critical influencing factors of nanoparticle (NP) transport into tumors based on the EPR effect using a combined radiogenomics and clinical magnetic resonance imaging (MRI) technique and gene set pathway enrichment analysis. Employing poly(lactic-co-glycolic acid) (PLGA)-coated Fe3O4 NPs as the contrast agent, the monolayer and multilayer distribution of the NPs were observed and quantitatively analyzed by MRI, improving the accuracy of evaluating vascular permeability by MRI. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes and pathways, we identified a variety of genes affecting vascular permeability, such as Cldn1, Dlg2, Bves, Prkag3, Cldn10, and Cldn8, which are related to tight junctions and control the permeability of blood vessels in tumors. The method presented here provides an MRI-supported approach to increase the breadth of data collected from genetic screens, reveals genetic evidence of the presence of NPs in tumors and lays a foundation for clinical patient stratification and personalized treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 benzyl ether
阿拉丁 oleic acid (OA)
阿拉丁 poly(vinyl alcohol) (PVA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信