{"title":"Some time-inhomogeneous diffusion models for population growth in random environments","authors":"Virginia Giorno, Amelia G. Nobile","doi":"10.1016/j.cnsns.2024.108502","DOIUrl":null,"url":null,"abstract":"Deterministic growth laws, expressed by first order differential equations with time-depending intrinsic growth intensity function, are initially introduced. Such equations are then parameterized in a way to allow random fluctuations of the intrinsic growth intensity function. This procedure leads to time-inhomogeneous diffusion processes for which a detailed study of transition probability density functions and of the first-passage time densities through arbitrarily fixed threshold values is performed. Some statistically significant quantities, such as the mean and the variance of the time necessary for the process to attain an assigned state, are obtained in closed form. The behaviors of several diffusion processes, suitable to describe the growth of populations, are finally analyzed and compared. Various numerical computations are performed in the presence of periodic intrinsic intensity function.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"139 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2024.108502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Deterministic growth laws, expressed by first order differential equations with time-depending intrinsic growth intensity function, are initially introduced. Such equations are then parameterized in a way to allow random fluctuations of the intrinsic growth intensity function. This procedure leads to time-inhomogeneous diffusion processes for which a detailed study of transition probability density functions and of the first-passage time densities through arbitrarily fixed threshold values is performed. Some statistically significant quantities, such as the mean and the variance of the time necessary for the process to attain an assigned state, are obtained in closed form. The behaviors of several diffusion processes, suitable to describe the growth of populations, are finally analyzed and compared. Various numerical computations are performed in the presence of periodic intrinsic intensity function.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.