Villin-1 regulates ferroptosis in colorectal cancer progression.

Bangli Hu, Yixin Yin, Birong Zhang, Siqi Li, Kezhi Li, You Zhou, Qinghua Huang
{"title":"Villin-1 regulates ferroptosis in colorectal cancer progression.","authors":"Bangli Hu, Yixin Yin, Birong Zhang, Siqi Li, Kezhi Li, You Zhou, Qinghua Huang","doi":"10.1111/febs.17350","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite extensive research, the mechanistic underpinnings driving CRC progression remain largely unknown. As a fundamental component of the brush border cytoskeleton, villin-1 (VIL1) acts as a marker for intestinal cell differentiation and maturation. Through a comprehensive transcriptomics analysis of eight studies (total sample: n = 1952), we consistently observed significant upregulation of VIL1 expression in CRC tumors compared with adjacent normal tissue. In our independent cohort, this notable upregulation has been further validated at both mRNA and protein levels in colon tumor tissues, relative not only to adjacent normal tissue but also to normal controls. Our data show that VIL1 promotes proliferation and migration while inhibiting apoptosis. Conversely, knockout of VIL1 suppresses proliferation and migration while inducing apoptosis. Mechanistically, we reveal that knocking out VIL1 activates ferroptosis and inhibits the migration of CRC cells, while overexpressing VIL1 yields the opposite effects, and vice versa. Additionally, VIL1 binds to Nuclear factor NF-kappa-B p105 subunit (NF-κB) and controls NF-κB expression. In vivo, overexpressing VIL1 inhibits ferroptosis, and induces the expression of NF-κB and lipocalin 2 (LCN2), thereby promoting CRC tumor growth. Thus, we have identified the VIL1/NF-κB axis as a pivotal regulator of CRC progression through ferroptosis modulation, unveiling VIL1 as a promising therapeutic target for CRC treatment via ferroptosis. Our study offers novel avenues for exploring the therapeutic potential of ferroptosis in CRC management, emphasizing the high potential of VIL1 in regulating colorectal tumorigenesis.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite extensive research, the mechanistic underpinnings driving CRC progression remain largely unknown. As a fundamental component of the brush border cytoskeleton, villin-1 (VIL1) acts as a marker for intestinal cell differentiation and maturation. Through a comprehensive transcriptomics analysis of eight studies (total sample: n = 1952), we consistently observed significant upregulation of VIL1 expression in CRC tumors compared with adjacent normal tissue. In our independent cohort, this notable upregulation has been further validated at both mRNA and protein levels in colon tumor tissues, relative not only to adjacent normal tissue but also to normal controls. Our data show that VIL1 promotes proliferation and migration while inhibiting apoptosis. Conversely, knockout of VIL1 suppresses proliferation and migration while inducing apoptosis. Mechanistically, we reveal that knocking out VIL1 activates ferroptosis and inhibits the migration of CRC cells, while overexpressing VIL1 yields the opposite effects, and vice versa. Additionally, VIL1 binds to Nuclear factor NF-kappa-B p105 subunit (NF-κB) and controls NF-κB expression. In vivo, overexpressing VIL1 inhibits ferroptosis, and induces the expression of NF-κB and lipocalin 2 (LCN2), thereby promoting CRC tumor growth. Thus, we have identified the VIL1/NF-κB axis as a pivotal regulator of CRC progression through ferroptosis modulation, unveiling VIL1 as a promising therapeutic target for CRC treatment via ferroptosis. Our study offers novel avenues for exploring the therapeutic potential of ferroptosis in CRC management, emphasizing the high potential of VIL1 in regulating colorectal tumorigenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信