Membrane anchoring of New Delhi metallo-β-lactamase-1 alters the fitness of Escherichia coli and increases its susceptibility to colistin by inducing outer membrane destabilization.

Bo Ma, Shan Zhou, Chao Fang, Mingzhi Wang, Xiaoyan Xue, Jianwei Xie, Jiayun Liu, Zheng Hou
{"title":"Membrane anchoring of New Delhi metallo-β-lactamase-1 alters the fitness of Escherichia coli and increases its susceptibility to colistin by inducing outer membrane destabilization.","authors":"Bo Ma, Shan Zhou, Chao Fang, Mingzhi Wang, Xiaoyan Xue, Jianwei Xie, Jiayun Liu, Zheng Hou","doi":"10.1111/febs.17351","DOIUrl":null,"url":null,"abstract":"<p><p>New Delhi metallo-β-lactamase-1 (NDM-1)-producing bacteria are resistant to nearly all available β-lactam antibiotics and have become a public health threat. Antibiotic resistance often carries fitness costs, which typically manifest as a reduced bacterial growth rate. Here, we investigated the mechanism of fitness cost in NDM-1-producing bacteria. Our findings revealed that strains expressing bla<sub>NDM-1</sub> exhibited a significant growth defect under high osmotic stress. This fitness cost was attributed to the anchoring of NDM-1 to the bacterial outer membrane via its leader peptide, which destabilized the outer membrane. Replacing the membrane-anchoring residue Cys26 in the leader peptide with alanine not only restored outer membrane stability but also ameliorated the bacterial fitness cost. Furthermore, the anchoring of NDM-1 to the membrane increased bacterial susceptibility to the membrane-disrupting antibiotic colistin, both in vitro and in vivo, as confirmed in engineered and clinically isolated strains. In conclusion, membrane anchoring of NDM-1 increased the permeability of the bacterial outer membrane, thereby reducing the fitness of NDM-1-producing bacteria and enhancing their susceptibility to colistin. These results not only elucidate the mechanism of fitness cost associated with NDM-1 but also provide new insights into the rational use of colistin to combat infections caused by NDM-1-producing bacteria.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New Delhi metallo-β-lactamase-1 (NDM-1)-producing bacteria are resistant to nearly all available β-lactam antibiotics and have become a public health threat. Antibiotic resistance often carries fitness costs, which typically manifest as a reduced bacterial growth rate. Here, we investigated the mechanism of fitness cost in NDM-1-producing bacteria. Our findings revealed that strains expressing blaNDM-1 exhibited a significant growth defect under high osmotic stress. This fitness cost was attributed to the anchoring of NDM-1 to the bacterial outer membrane via its leader peptide, which destabilized the outer membrane. Replacing the membrane-anchoring residue Cys26 in the leader peptide with alanine not only restored outer membrane stability but also ameliorated the bacterial fitness cost. Furthermore, the anchoring of NDM-1 to the membrane increased bacterial susceptibility to the membrane-disrupting antibiotic colistin, both in vitro and in vivo, as confirmed in engineered and clinically isolated strains. In conclusion, membrane anchoring of NDM-1 increased the permeability of the bacterial outer membrane, thereby reducing the fitness of NDM-1-producing bacteria and enhancing their susceptibility to colistin. These results not only elucidate the mechanism of fitness cost associated with NDM-1 but also provide new insights into the rational use of colistin to combat infections caused by NDM-1-producing bacteria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信