Machine Learning for Evaluating Vulnerable Plaque on Coronary Computed Tomography Using Spectral Imaging.

Circulation reports Pub Date : 2024-11-13 eCollection Date: 2024-12-10 DOI:10.1253/circrep.CR-24-0086
Junji Mochizuki, Yoshiki Hata, Takeshi Nakaura, Katsushi Hashimoto, Hiroyuki Uetani, Yasunori Nagayama, Masafumi Kidoh, Yoshinori Funama, Toshinori Hirai
{"title":"Machine Learning for Evaluating Vulnerable Plaque on Coronary Computed Tomography Using Spectral Imaging.","authors":"Junji Mochizuki, Yoshiki Hata, Takeshi Nakaura, Katsushi Hashimoto, Hiroyuki Uetani, Yasunori Nagayama, Masafumi Kidoh, Yoshinori Funama, Toshinori Hirai","doi":"10.1253/circrep.CR-24-0086","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to determine whether spectral imaging with dual-energy computed tomography (CT) can improve diagnostic performance for coronary plaque characterization.</p><p><strong>Methods and results: </strong>We conducted a retrospective analysis of 30 patients with coronary plaques, using coronary CT angiography (dual-layer CT) and intravascular ultrasound (IVUS) studies. Based on IVUS findings, patients were diagnosed with either vulnerable or stable plaques. We computed 7 histogram parameters for plaque CT numbers in 120 kVp images and virtual monochromatic images ranging from 40 to 140 keV at 5-keV intervals. A predictive model was developed using histogram data of optimal energy, plaque volume or stenosis, and a combination of both. The model's performance was evaluated by calculating the area under the receiver operating characteristic curve (AUC) using 5-fold cross-validation. Peak diagnostic performances for each histogram parameter were observed at various energy levels (40-110 keV) in the univariate logistic regression model. The histogram model demonstrated optimal diagnostic performance at 65 keV, with an AUC of 0.81. The combined model, incorporating histogram data and plaque volume, achieved an AUC of 0.85, which was similar to the performance of qualitative CT characteristics (AUC=0.88; P=0.70).</p><p><strong>Conclusions: </strong>Spectral imaging with dual-energy CT can enhance the diagnostic performance of machine learning using CT histograms for coronary plaque characterization.</p>","PeriodicalId":94305,"journal":{"name":"Circulation reports","volume":"6 12","pages":"564-572"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1253/circrep.CR-24-0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to determine whether spectral imaging with dual-energy computed tomography (CT) can improve diagnostic performance for coronary plaque characterization.

Methods and results: We conducted a retrospective analysis of 30 patients with coronary plaques, using coronary CT angiography (dual-layer CT) and intravascular ultrasound (IVUS) studies. Based on IVUS findings, patients were diagnosed with either vulnerable or stable plaques. We computed 7 histogram parameters for plaque CT numbers in 120 kVp images and virtual monochromatic images ranging from 40 to 140 keV at 5-keV intervals. A predictive model was developed using histogram data of optimal energy, plaque volume or stenosis, and a combination of both. The model's performance was evaluated by calculating the area under the receiver operating characteristic curve (AUC) using 5-fold cross-validation. Peak diagnostic performances for each histogram parameter were observed at various energy levels (40-110 keV) in the univariate logistic regression model. The histogram model demonstrated optimal diagnostic performance at 65 keV, with an AUC of 0.81. The combined model, incorporating histogram data and plaque volume, achieved an AUC of 0.85, which was similar to the performance of qualitative CT characteristics (AUC=0.88; P=0.70).

Conclusions: Spectral imaging with dual-energy CT can enhance the diagnostic performance of machine learning using CT histograms for coronary plaque characterization.

利用光谱成像评估冠状动脉计算机断层易损斑块的机器学习。
背景:本研究旨在确定双能计算机断层扫描(CT)的光谱成像是否可以提高冠状动脉斑块特征的诊断性能。方法和结果:我们对30例冠状动脉斑块患者进行回顾性分析,采用冠状动脉CT血管造影(双层CT)和血管内超声(IVUS)研究。根据IVUS的结果,患者被诊断为易损斑块或稳定斑块。我们计算了在120kvp图像和虚拟单色图像中斑块CT数的7个直方图参数,范围从40到140 keV,间隔为5 keV。利用最佳能量、斑块体积或狭窄的直方图数据以及两者的组合建立了预测模型。通过5次交叉验证计算受试者工作特征曲线下面积(AUC)来评估模型的性能。在单变量逻辑回归模型中,在不同能量水平(40-110 keV)下观察每个直方图参数的峰值诊断性能。直方图模型在65 keV时显示出最佳的诊断性能,AUC为0.81。结合直方图数据和斑块体积的联合模型的AUC为0.85,与定性CT特征的表现相似(AUC=0.88;P = 0.70)。结论:双能CT光谱成像可提高CT直方图机器学习对冠状动脉斑块特征的诊断效能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信