A Study on Machine Learning Models in Detecting Cognitive Impairments in Alzheimer's Patients Using Cerebrospinal Fluid Biomarkers.

Vivek K Tiwari, Premananda Indic, Shawana Tabassum
{"title":"A Study on Machine Learning Models in Detecting Cognitive Impairments in Alzheimer's Patients Using Cerebrospinal Fluid Biomarkers.","authors":"Vivek K Tiwari, Premananda Indic, Shawana Tabassum","doi":"10.1177/15333175241308645","DOIUrl":null,"url":null,"abstract":"<p><p>Several research studies have demonstrated the potential use of cerebrospinal fluid biomarkers such as amyloid beta 1-42, T-tau, and P-tau, in early diagnosis of Alzheimer's disease stages. The levels of these biomarkers in conjunction with the dementia rating scores are used to empirically differentiate the dementia patients from normal controls. In this work, we evaluated the performance of standard machine learning classifiers using cerebrospinal fluid biomarker levels as the features to differentiate dementia patients from normal controls. We employed various types of machine learning models, that includes Discriminant, Logistic Regression, Tree, K-Nearest Neighbor, Support Vector Machine, and Naïve Bayes classifiers. The results demonstrate that these models can distinguish cognitively impaired subjects from normal controls with an accuracy ranging from 64% to 69% and an area under the curve of the receiver operating characteristics between 0.64 and 0.73. In addition, we found that the levels of 2 biomarkers, amyloid beta 1-42 and T-tau, provide a modest improvement in accuracy when distinguishing dementia patients from healthy controls.</p>","PeriodicalId":93865,"journal":{"name":"American journal of Alzheimer's disease and other dementias","volume":"39 ","pages":"15333175241308645"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of Alzheimer's disease and other dementias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15333175241308645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several research studies have demonstrated the potential use of cerebrospinal fluid biomarkers such as amyloid beta 1-42, T-tau, and P-tau, in early diagnosis of Alzheimer's disease stages. The levels of these biomarkers in conjunction with the dementia rating scores are used to empirically differentiate the dementia patients from normal controls. In this work, we evaluated the performance of standard machine learning classifiers using cerebrospinal fluid biomarker levels as the features to differentiate dementia patients from normal controls. We employed various types of machine learning models, that includes Discriminant, Logistic Regression, Tree, K-Nearest Neighbor, Support Vector Machine, and Naïve Bayes classifiers. The results demonstrate that these models can distinguish cognitively impaired subjects from normal controls with an accuracy ranging from 64% to 69% and an area under the curve of the receiver operating characteristics between 0.64 and 0.73. In addition, we found that the levels of 2 biomarkers, amyloid beta 1-42 and T-tau, provide a modest improvement in accuracy when distinguishing dementia patients from healthy controls.

利用脑脊液生物标志物检测阿尔茨海默病患者认知障碍的机器学习模型研究
几项研究已经证明了脑脊液生物标志物如淀粉样蛋白β 1-42、T-tau和P-tau在阿尔茨海默病早期诊断中的潜在应用。这些生物标志物的水平与痴呆评分相结合,用于经验区分痴呆患者与正常对照。在这项工作中,我们使用脑脊液生物标志物水平作为区分痴呆患者和正常对照的特征,评估了标准机器学习分类器的性能。我们使用了各种类型的机器学习模型,包括判别、逻辑回归、树、k近邻、支持向量机和Naïve贝叶斯分类器。结果表明,这些模型能够将认知障碍受试者与正常对照区分开来,准确率在64% ~ 69%之间,受试者工作特征曲线下面积在0.64 ~ 0.73之间。此外,我们发现淀粉样蛋白β 1-42和T-tau两种生物标志物的水平在区分痴呆患者和健康对照时提供了适度的准确性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信