BPEN: Brain Posterior Evidential Network for trustworthy brain imaging analysis.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-11-26 DOI:10.1016/j.neunet.2024.106943
Kai Ye, Haoteng Tang, Siyuan Dai, Igor Fortel, Paul M Thompson, R Scott Mackin, Alex Leow, Heng Huang, Liang Zhan
{"title":"BPEN: Brain Posterior Evidential Network for trustworthy brain imaging analysis.","authors":"Kai Ye, Haoteng Tang, Siyuan Dai, Igor Fortel, Paul M Thompson, R Scott Mackin, Alex Leow, Heng Huang, Liang Zhan","doi":"10.1016/j.neunet.2024.106943","DOIUrl":null,"url":null,"abstract":"<p><p>The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological conditions. Despite these achievements, the aspect of prediction uncertainty has been relatively underexplored in brain fMRI data analysis. Accurate uncertainty estimation is essential for trustworthy learning, given the challenges associated with brain fMRI data acquisition and the potential diagnostic implications for patients. To address this gap, we introduce a novel posterior evidential network, named the Brain Posterior Evidential Network (BPEN), designed to capture both aleatoric and epistemic uncertainty in the analysis of brain fMRI data. We conducted comprehensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and ADNI-depression (ADNI-D) cohorts, focusing on predictions for mild cognitive impairment (MCI) and depression across various diagnostic groups. Our experiments not only unequivocally demonstrate the superior predictive performance of our BPEN model compared to existing state-of-the-art methods but also underscore the importance of uncertainty estimation in predictive models.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106943"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106943","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The application of deep learning techniques to analyze brain functional magnetic resonance imaging (fMRI) data has led to significant advancements in identifying prospective biomarkers associated with various clinical phenotypes and neurological conditions. Despite these achievements, the aspect of prediction uncertainty has been relatively underexplored in brain fMRI data analysis. Accurate uncertainty estimation is essential for trustworthy learning, given the challenges associated with brain fMRI data acquisition and the potential diagnostic implications for patients. To address this gap, we introduce a novel posterior evidential network, named the Brain Posterior Evidential Network (BPEN), designed to capture both aleatoric and epistemic uncertainty in the analysis of brain fMRI data. We conducted comprehensive experiments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and ADNI-depression (ADNI-D) cohorts, focusing on predictions for mild cognitive impairment (MCI) and depression across various diagnostic groups. Our experiments not only unequivocally demonstrate the superior predictive performance of our BPEN model compared to existing state-of-the-art methods but also underscore the importance of uncertainty estimation in predictive models.

用于可靠脑成像分析的脑后证据网络。
应用深度学习技术分析脑功能磁共振成像(fMRI)数据,在识别与各种临床表型和神经系统疾病相关的前瞻性生物标志物方面取得了重大进展。尽管取得了这些成就,但在脑功能磁共振成像数据分析中,预测不确定性方面的探索相对不足。考虑到与脑功能磁共振成像数据采集相关的挑战和对患者的潜在诊断意义,准确的不确定性估计对于可信的学习至关重要。为了解决这一差距,我们引入了一种新的后验证据网络,称为脑后验证据网络(BPEN),旨在捕捉脑功能磁共振成像数据分析中的任意不确定性和认知不确定性。我们使用来自阿尔茨海默病神经影像学倡议(ADNI)和ADNI-抑郁(ADNI- d)队列的数据进行了全面的实验,重点关注不同诊断组对轻度认知障碍(MCI)和抑郁的预测。我们的实验不仅明确地证明了我们的BPEN模型与现有的最先进的方法相比具有优越的预测性能,而且强调了预测模型中不确定性估计的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信