A New Approach to Retinal Oxygen Extraction Measurement Based on Laser Speckle Flowgraphy and Retinal Oximetry.

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY
Viktoria Pai, Patrick Janku, Theresa Lindner, Ulrich Graf, Leopold Schmetterer, Gerhard Garhöfer, Doreen Schmidl
{"title":"A New Approach to Retinal Oxygen Extraction Measurement Based on Laser Speckle Flowgraphy and Retinal Oximetry.","authors":"Viktoria Pai, Patrick Janku, Theresa Lindner, Ulrich Graf, Leopold Schmetterer, Gerhard Garhöfer, Doreen Schmidl","doi":"10.1167/tvst.13.12.12","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Currently, no standard for the measurement of retinal oxygen extraction exists. Here, we present a novel approach for measurement of retinal oxygen extraction based on two commercially available devices, namely laser speckle flowgraphy (LSFG) and retinal oximetry.</p><p><strong>Methods: </strong>The study was conducted in a randomized, double-masked design. Two study days were scheduled for each healthy participant. On one study day, measurements were performed during breathing of 100% oxygen to induce hyperoxia and on the other study day during breathing of 12% oxygen in nitrogen to induce hypoxia. To obtain data for short- and long-term reproducibility, baseline measurements during breathing of room air were performed twice on both study days. Retinal oxygen extraction was calculated from retinal oxygen saturation measurements using the oxygen module of the dynamic vessel analyzer (Imedos, Jena, Germany) and retinal blood flow measurements using LSFG (Nidek, Tokyo, Japan).</p><p><strong>Results: </strong>As expected, breathing of 100% oxygen induced a significant decrease in retinal oxygen extraction of 36% ± 17% (P < 0.001). During hypoxia, retinal oxygen extraction did not change from baseline (P = 0.153). For short-term reproducibility, the intraclass correlation coefficient was excellent (0.910) and good (0.879) for long-term reproducibility. Coefficient of variation between measurements was 9.8% ± 7.0% for short-term and 10.4% ± 8.8% for long-term reproducibility.</p><p><strong>Conclusions: </strong>The data obtained in the present experiments show that the new approach to measure retinal oxygen extraction is valid and reproducible in healthy volunteers.</p><p><strong>Translational relevance: </strong>The technique may become a valuable tool in studying retinal hypoxia in a wide variety of ocular and systemic diseases in the future.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"13 12","pages":"12"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.13.12.12","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Currently, no standard for the measurement of retinal oxygen extraction exists. Here, we present a novel approach for measurement of retinal oxygen extraction based on two commercially available devices, namely laser speckle flowgraphy (LSFG) and retinal oximetry.

Methods: The study was conducted in a randomized, double-masked design. Two study days were scheduled for each healthy participant. On one study day, measurements were performed during breathing of 100% oxygen to induce hyperoxia and on the other study day during breathing of 12% oxygen in nitrogen to induce hypoxia. To obtain data for short- and long-term reproducibility, baseline measurements during breathing of room air were performed twice on both study days. Retinal oxygen extraction was calculated from retinal oxygen saturation measurements using the oxygen module of the dynamic vessel analyzer (Imedos, Jena, Germany) and retinal blood flow measurements using LSFG (Nidek, Tokyo, Japan).

Results: As expected, breathing of 100% oxygen induced a significant decrease in retinal oxygen extraction of 36% ± 17% (P < 0.001). During hypoxia, retinal oxygen extraction did not change from baseline (P = 0.153). For short-term reproducibility, the intraclass correlation coefficient was excellent (0.910) and good (0.879) for long-term reproducibility. Coefficient of variation between measurements was 9.8% ± 7.0% for short-term and 10.4% ± 8.8% for long-term reproducibility.

Conclusions: The data obtained in the present experiments show that the new approach to measure retinal oxygen extraction is valid and reproducible in healthy volunteers.

Translational relevance: The technique may become a valuable tool in studying retinal hypoxia in a wide variety of ocular and systemic diseases in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Vision Science & Technology
Translational Vision Science & Technology Engineering-Biomedical Engineering
CiteScore
5.70
自引率
3.30%
发文量
346
审稿时长
25 weeks
期刊介绍: Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO. The journal covers a broad spectrum of work, including but not limited to: Applications of stem cell technology for regenerative medicine, Development of new animal models of human diseases, Tissue bioengineering, Chemical engineering to improve virus-based gene delivery, Nanotechnology for drug delivery, Design and synthesis of artificial extracellular matrices, Development of a true microsurgical operating environment, Refining data analysis algorithms to improve in vivo imaging technology, Results of Phase 1 clinical trials, Reverse translational ("bedside to bench") research. TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信