Testing the equality of response rate functions for paired binary data with multiple groups.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Yufei Liu, Zhiming Li, Keyi Mou, Junhong Du
{"title":"Testing the equality of response rate functions for paired binary data with multiple groups.","authors":"Yufei Liu, Zhiming Li, Keyi Mou, Junhong Du","doi":"10.1177/09622802241292672","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical trials, we often encounter observations from patients' paired organs. In paired correlated data, there exist various measures to evaluate the therapeutic responses, such as risk difference, relative risk ratio, and odds ratio. These measures are essentially some forms of response rate functions. Based on this point, this article aims to test the equality of response rate functions such that the homogeneity tests of the above measures are special cases. Under an interclass correlation model, the global and constrained maximum likelihood estimations are obtained through algorithms. Furthermore, we construct likelihood ratio, score, and Wald-type statistics and provide the explicit expressions of the corresponding tests based on the risk difference, relative risk ratio, and odds ratio. Monte Carlo simulations are conducted to compare the performance of the proposed methods in terms of the empirical type I error rates and powers. The results show that the score tests perform satisfactorily as their type I error rates are close to the specified nominal level, followed by the likelihood ratio test. The Wald-type tests exhibit poor performance, especially for small sample sizes. A real example is given to illustrate the three proposed test statistics.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241292672"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241292672","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical trials, we often encounter observations from patients' paired organs. In paired correlated data, there exist various measures to evaluate the therapeutic responses, such as risk difference, relative risk ratio, and odds ratio. These measures are essentially some forms of response rate functions. Based on this point, this article aims to test the equality of response rate functions such that the homogeneity tests of the above measures are special cases. Under an interclass correlation model, the global and constrained maximum likelihood estimations are obtained through algorithms. Furthermore, we construct likelihood ratio, score, and Wald-type statistics and provide the explicit expressions of the corresponding tests based on the risk difference, relative risk ratio, and odds ratio. Monte Carlo simulations are conducted to compare the performance of the proposed methods in terms of the empirical type I error rates and powers. The results show that the score tests perform satisfactorily as their type I error rates are close to the specified nominal level, followed by the likelihood ratio test. The Wald-type tests exhibit poor performance, especially for small sample sizes. A real example is given to illustrate the three proposed test statistics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信