{"title":"Marginal semiparametric accelerated failure time cure model for clustered survival data.","authors":"Yi Niu, Duze Fan, Jie Ding, Yingwei Peng","doi":"10.1177/09622802241295335","DOIUrl":null,"url":null,"abstract":"<p><p>The semiparametric accelerated failure time mixture cure model is an appealing alternative to the proportional hazards mixture cure model in analyzing failure time data with long-term survivors. However, this model was only proposed for independent survival data and it has not been extended to clustered or correlated survival data, partly due to the complexity of the estimation method for the model. In this paper, we consider a marginal semiparametric accelerated failure time mixture cure model for clustered right-censored failure time data with a potential cure fraction. We overcome the complexity of the existing semiparametric method by proposing a generalized estimating equations approach based on the expectation-maximization algorithm to estimate the regression parameters in the model. The correlation structures within clusters are modeled by working correlation matrices in the proposed generalized estimating equations. The large sample properties of the regression estimators are established. Numerical studies demonstrate that the proposed estimation method is easy to use and robust to the misspecification of working matrices and that higher efficiency is achieved when the working correlation structure is closer to the true correlation structure. We apply the proposed model and estimation method to a contralateral breast cancer study and reveal new insights when the potential correlation between patients is taken into account.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241295335"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241295335","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The semiparametric accelerated failure time mixture cure model is an appealing alternative to the proportional hazards mixture cure model in analyzing failure time data with long-term survivors. However, this model was only proposed for independent survival data and it has not been extended to clustered or correlated survival data, partly due to the complexity of the estimation method for the model. In this paper, we consider a marginal semiparametric accelerated failure time mixture cure model for clustered right-censored failure time data with a potential cure fraction. We overcome the complexity of the existing semiparametric method by proposing a generalized estimating equations approach based on the expectation-maximization algorithm to estimate the regression parameters in the model. The correlation structures within clusters are modeled by working correlation matrices in the proposed generalized estimating equations. The large sample properties of the regression estimators are established. Numerical studies demonstrate that the proposed estimation method is easy to use and robust to the misspecification of working matrices and that higher efficiency is achieved when the working correlation structure is closer to the true correlation structure. We apply the proposed model and estimation method to a contralateral breast cancer study and reveal new insights when the potential correlation between patients is taken into account.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)