Hierarchical selection of genetic and gene by environment interaction effects in high-dimensional mixed models.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Julien St-Pierre, Karim Oualkacha, Sahir Rai Bhatnagar
{"title":"Hierarchical selection of genetic and gene by environment interaction effects in high-dimensional mixed models.","authors":"Julien St-Pierre, Karim Oualkacha, Sahir Rai Bhatnagar","doi":"10.1177/09622802241293768","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between genes and environmental factors may play a key role in the etiology of many common disorders. Several regularized generalized linear models have been proposed for hierarchical selection of gene by environment interaction effects, where a gene-environment interaction effect is selected only if the corresponding genetic main effect is also selected in the model. However, none of these methods allow to include random effects to account for population structure, subject relatedness and shared environmental exposure. In this article, we develop a unified approach based on regularized penalized quasi-likelihood estimation to perform hierarchical selection of gene-environment interaction effects in sparse regularized mixed models. We compare the selection and prediction accuracy of our proposed model with existing methods through simulations under the presence of population structure and shared environmental exposure. We show that for all simulation scenarios, including and additional random effect to account for the shared environmental exposure reduces the false positive rate and false discovery rate of our proposed method for selection of both gene-environment interaction and main effects. Using the <math><msub><mi>F</mi><mn>1</mn></msub></math> score as a balanced measure of the false discovery rate and true positive rate, we further show that in the hierarchical simulation scenarios, our method outperforms other methods for retrieving important gene-environment interaction effects. Finally, we apply our method to a real data application using the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, and found that our method retrieves previously reported significant loci.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241293768"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241293768","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions between genes and environmental factors may play a key role in the etiology of many common disorders. Several regularized generalized linear models have been proposed for hierarchical selection of gene by environment interaction effects, where a gene-environment interaction effect is selected only if the corresponding genetic main effect is also selected in the model. However, none of these methods allow to include random effects to account for population structure, subject relatedness and shared environmental exposure. In this article, we develop a unified approach based on regularized penalized quasi-likelihood estimation to perform hierarchical selection of gene-environment interaction effects in sparse regularized mixed models. We compare the selection and prediction accuracy of our proposed model with existing methods through simulations under the presence of population structure and shared environmental exposure. We show that for all simulation scenarios, including and additional random effect to account for the shared environmental exposure reduces the false positive rate and false discovery rate of our proposed method for selection of both gene-environment interaction and main effects. Using the F1 score as a balanced measure of the false discovery rate and true positive rate, we further show that in the hierarchical simulation scenarios, our method outperforms other methods for retrieving important gene-environment interaction effects. Finally, we apply our method to a real data application using the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, and found that our method retrieves previously reported significant loci.

高维混合模型中遗传和基因在环境相互作用下的层次选择。
基因和环境因素之间的相互作用可能在许多常见疾病的病因学中起关键作用。针对环境相互作用对基因的层次选择,提出了几种正则化广义线性模型,其中只有在模型中也选择了相应的遗传主效应时,才能选择基因-环境相互作用效应。然而,这些方法都不允许包括随机效应来解释人口结构、受试者相关性和共同的环境暴露。在本文中,我们开发了一种基于正则化惩罚拟似然估计的统一方法来对稀疏正则化混合模型中的基因-环境相互作用效应进行分层选择。通过种群结构和共同环境暴露的模拟,比较了所提出模型与现有方法的选择和预测精度。我们表明,对于所有模拟场景,包括和额外的随机效应来解释共享环境暴露,减少了我们提出的选择基因-环境相互作用和主要效应的方法的假阳性率和假发现率。使用F1分数作为假发现率和真阳性率的平衡度量,我们进一步表明,在分层模拟场景中,我们的方法在检索重要的基因-环境相互作用效应方面优于其他方法。最后,我们将我们的方法应用于使用口腔面部疼痛:前瞻性评估和风险评估(OPPERA)研究的实际数据应用中,发现我们的方法检索了先前报道的重要位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信