A programmable, open-source robot that scratches cultured tissues to investigate cell migration, healing, and tissue sculpting.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-12-16 Epub Date: 2024-12-09 DOI:10.1016/j.crmeth.2024.100915
Yubin Lin, Alexander Silverman-Dultz, Madeline Bailey, Daniel J Cohen
{"title":"A programmable, open-source robot that scratches cultured tissues to investigate cell migration, healing, and tissue sculpting.","authors":"Yubin Lin, Alexander Silverman-Dultz, Madeline Bailey, Daniel J Cohen","doi":"10.1016/j.crmeth.2024.100915","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the widespread popularity of the \"scratch assay,\" where a pipette is dragged manually through cultured tissue to create a gap to study cell migration and healing, it carries significant drawbacks. Its heavy reliance on manual technique can complicate quantification, reduce throughput, and limit the versatility and reproducibility. We present an open-source, low-cost, accessible, robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood without specialized training, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, the robot demonstrates precise removal of tissues for sculpting arbitrary tissue and wound shapes, enabling complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay and opens up new possibilities in complex tissue engineering for realistic wound healing and migration research.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100915"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the widespread popularity of the "scratch assay," where a pipette is dragged manually through cultured tissue to create a gap to study cell migration and healing, it carries significant drawbacks. Its heavy reliance on manual technique can complicate quantification, reduce throughput, and limit the versatility and reproducibility. We present an open-source, low-cost, accessible, robotic scratching platform that addresses all of the core issues. Compatible with nearly all standard cell culture dishes and usable directly in a sterile culture hood without specialized training, our robot makes highly reproducible scratches in a variety of complex cultured tissues with high throughput. Moreover, the robot demonstrates precise removal of tissues for sculpting arbitrary tissue and wound shapes, enabling complex co-culture experiments. This system significantly improves the usefulness of the conventional scratch assay and opens up new possibilities in complex tissue engineering for realistic wound healing and migration research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信