Radial mechanical properties of deoxyribonucleic acid molecules.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xia Wang, Jianjun Dong, Mingyan Gao, Ying Wang, Fengyan Hou, Jingyu Wang, Ye Li, Zuobin Wang
{"title":"Radial mechanical properties of deoxyribonucleic acid molecules.","authors":"Xia Wang, Jianjun Dong, Mingyan Gao, Ying Wang, Fengyan Hou, Jingyu Wang, Ye Li, Zuobin Wang","doi":"10.1088/1361-6528/ad9930","DOIUrl":null,"url":null,"abstract":"<p><p>Given the small diameter of deoxyribonucleic acid (DNA), the difficulty in studying its radial mechanical properties laid in the challenge of applying a precise and controlled small force. In this work, the radial mechanical properties of DNA were measured in the AFM. DNA adhesion properties were analyzed through force-distance curves and adhesion images. The adhesion force values applied on DNA obtained from the force-distance curves were consistent with those obtained from the adhesion images. The Young's modulus of DNA was determined by collecting the data of indentation depth and the force applied on DNA and using the Hertz model for calculation. At the same compression speed, the Young's moduli increased with increasing forces, but exhibited a nonlinear growth. This reflected the complex stress-strain behavior of DNA. The impact of speeds on mechanical properties of DNA was explored. Higher speed resulted in greater Young's moduli and adhesion. This study not only deepens the understanding the mechanical properties of DNA, but also provides a strategy for investigating the mechanical properties of other thin and soft materials.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9930","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given the small diameter of deoxyribonucleic acid (DNA), the difficulty in studying its radial mechanical properties laid in the challenge of applying a precise and controlled small force. In this work, the radial mechanical properties of DNA were measured in the AFM. DNA adhesion properties were analyzed through force-distance curves and adhesion images. The adhesion force values applied on DNA obtained from the force-distance curves were consistent with those obtained from the adhesion images. The Young's modulus of DNA was determined by collecting the data of indentation depth and the force applied on DNA and using the Hertz model for calculation. At the same compression speed, the Young's moduli increased with increasing forces, but exhibited a nonlinear growth. This reflected the complex stress-strain behavior of DNA. The impact of speeds on mechanical properties of DNA was explored. Higher speed resulted in greater Young's moduli and adhesion. This study not only deepens the understanding the mechanical properties of DNA, but also provides a strategy for investigating the mechanical properties of other thin and soft materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信