{"title":"The transcription factor VvMYB44-1 plays a role in reducing grapevine anthocyanin biosynthesis at high temperature.","authors":"Xiangpeng Leng, Chen Li, Peipei Wang, Yiran Ren, Jianqing Chen, Guangchao Liu, Abdul Hakeem, Yuting Liu, Xiaoya Shi, Ting Hou, Muhammad Salman Haider, Gengsen Liu, Jinggui Fang","doi":"10.1093/plphys/kiae657","DOIUrl":null,"url":null,"abstract":"<p><p>High temperature reduces anthocyanin accumulation in various horticultural plants. However, the molecular mechanisms underlying the high-temperature-induced reduction of anthocyanin in grape (Vitis vinifera) remain poorly understood. In this study, VvMYB44-1 was identified as a transcriptional repressor of anthocyanin biosynthesis in grape berries, and its gene expression was strongly induced by high-temperature treatment. Overexpression of VvMYB44-1 inhibited anthocyanin accumulation in both grape berries and tobacco (Nicotiana tabacum) by repressing the transcription of the anthocyanin biosynthesis genes dihydroflavonol-4-reductase (VvDFR) and UDP-glucose flavonoid-3-O-glucosyltransferase (VvUFGT). Furthermore, the interaction between VvMYB44-1 and VvWDR2 competitively inhibited the formation of the MYB-bHLH-WD40 (MBW) activation complex and weakened the transcriptional activity of the complex, thereby decreasing anthocyanin accumulation. Additionally, VvMYB44-1 facilitated cytokinin (CK) accumulation by upregulating the expression of the CK synthesis gene lonely guy 8 (VvLOG8) and inhibiting the CK degradation gene CK oxidase 4(VvCKX4), thus contributing to CK-mediated anthocyanin inhibition in grape berries. Moreover, the inhibitory effect of VvMYB44-1 on anthocyanin biosynthesis and its downstream target genes was weakened with the deletion of the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, indicating that the EAR motif is indispensable for the inhibitory effect of VvMYB44-1 on anthocyanin biosynthesis in grapes. These results provide insights into the regulatory network of VvMYB44-1 in high-temperature-mediated anthocyanin biosynthesis in grapes.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae657","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High temperature reduces anthocyanin accumulation in various horticultural plants. However, the molecular mechanisms underlying the high-temperature-induced reduction of anthocyanin in grape (Vitis vinifera) remain poorly understood. In this study, VvMYB44-1 was identified as a transcriptional repressor of anthocyanin biosynthesis in grape berries, and its gene expression was strongly induced by high-temperature treatment. Overexpression of VvMYB44-1 inhibited anthocyanin accumulation in both grape berries and tobacco (Nicotiana tabacum) by repressing the transcription of the anthocyanin biosynthesis genes dihydroflavonol-4-reductase (VvDFR) and UDP-glucose flavonoid-3-O-glucosyltransferase (VvUFGT). Furthermore, the interaction between VvMYB44-1 and VvWDR2 competitively inhibited the formation of the MYB-bHLH-WD40 (MBW) activation complex and weakened the transcriptional activity of the complex, thereby decreasing anthocyanin accumulation. Additionally, VvMYB44-1 facilitated cytokinin (CK) accumulation by upregulating the expression of the CK synthesis gene lonely guy 8 (VvLOG8) and inhibiting the CK degradation gene CK oxidase 4(VvCKX4), thus contributing to CK-mediated anthocyanin inhibition in grape berries. Moreover, the inhibitory effect of VvMYB44-1 on anthocyanin biosynthesis and its downstream target genes was weakened with the deletion of the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, indicating that the EAR motif is indispensable for the inhibitory effect of VvMYB44-1 on anthocyanin biosynthesis in grapes. These results provide insights into the regulatory network of VvMYB44-1 in high-temperature-mediated anthocyanin biosynthesis in grapes.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.