Essential Regulation of YAP1 in Fate Determinations of Spermatogonial Stem Cells and Male Fertility by Interacting with RAD21 and Targeting NEDD4 in Humans and Mice.
{"title":"Essential Regulation of YAP1 in Fate Determinations of Spermatogonial Stem Cells and Male Fertility by Interacting with RAD21 and Targeting NEDD4 in Humans and Mice.","authors":"Chunyun Li, Wei Chen, Yinghong Cui, Dong Zhang, Qingqing Yuan, Xing Yu, Zuping He","doi":"10.34133/research.0544","DOIUrl":null,"url":null,"abstract":"<p><p>Spermatogenesis is a sophisticated biological process by which spermatogonial stem cells (SSCs) undergo self-renewal and differentiation into spermatozoa. Molecular mechanisms underlying fate determinations of human SSCs by key genes and signaling pathways remain elusive. Here, we report for the first time that Yes1-associated transcriptional regulator (YAP1) is required for fate determinations of SSCs and male fertility by interacting with RAD21 and targeting NEDD4 in humans and mice. YAP1 was mainly located at cell nuclei of human SSCs. YAP1 silencing resulted in the decreases in proliferation and DNA synthesis as well as an enhancement in apoptosis of human SSCs both in vivo and in vitro. RNA sequencing and real-time polymerase chain reaction assays identified NEDD4 as a target of YAP1, and NEDD4 knockdown inhibited the proliferation of human SSCs and increased their apoptosis. Furthermore, YAP1 interacted with RAD21 to regulate NEDD4 transcription in human SSCs. Importantly, YAP1 abnormalities were found to be associated with non-obstructive azoospermia (NOA) as manifested as lower expression level of YAP1 in testicular tissues of NOA patients and <i>YAP1</i> single-nucleotide variants (SNVs) in 777 NOA patients. Finally, <i>Yap1</i> germline conditional knockout (cKO) mice assumed mitotic arrest, low sperm count, and motility. Collectively, these results highlight a critical role of YAP1 in determining the fate determinations of human SSCs and male infertility through the YAP1/RAD21/NEDD4 pathway. This study provides new insights into the genetic regulatory mechanisms underlying human spermatogenesis and the pathogenesis of NOA, and it offers new targets for gene therapy of male infertility.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0544"},"PeriodicalIF":11.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0544","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Spermatogenesis is a sophisticated biological process by which spermatogonial stem cells (SSCs) undergo self-renewal and differentiation into spermatozoa. Molecular mechanisms underlying fate determinations of human SSCs by key genes and signaling pathways remain elusive. Here, we report for the first time that Yes1-associated transcriptional regulator (YAP1) is required for fate determinations of SSCs and male fertility by interacting with RAD21 and targeting NEDD4 in humans and mice. YAP1 was mainly located at cell nuclei of human SSCs. YAP1 silencing resulted in the decreases in proliferation and DNA synthesis as well as an enhancement in apoptosis of human SSCs both in vivo and in vitro. RNA sequencing and real-time polymerase chain reaction assays identified NEDD4 as a target of YAP1, and NEDD4 knockdown inhibited the proliferation of human SSCs and increased their apoptosis. Furthermore, YAP1 interacted with RAD21 to regulate NEDD4 transcription in human SSCs. Importantly, YAP1 abnormalities were found to be associated with non-obstructive azoospermia (NOA) as manifested as lower expression level of YAP1 in testicular tissues of NOA patients and YAP1 single-nucleotide variants (SNVs) in 777 NOA patients. Finally, Yap1 germline conditional knockout (cKO) mice assumed mitotic arrest, low sperm count, and motility. Collectively, these results highlight a critical role of YAP1 in determining the fate determinations of human SSCs and male infertility through the YAP1/RAD21/NEDD4 pathway. This study provides new insights into the genetic regulatory mechanisms underlying human spermatogenesis and the pathogenesis of NOA, and it offers new targets for gene therapy of male infertility.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.