Kayne A Duncanson, Fabian Horst, Ehsan Abbasnejad, Gary Hanly, William S P Robertson, Dominic Thewlis
{"title":"Modelling individual variation in human walking gait across populations and walking conditions via gait recognition.","authors":"Kayne A Duncanson, Fabian Horst, Ehsan Abbasnejad, Gary Hanly, William S P Robertson, Dominic Thewlis","doi":"10.1098/rsif.2024.0565","DOIUrl":null,"url":null,"abstract":"<p><p>Human walking gait is a personal story written by the body, a tool for understanding biological identity in healthcare and security. Gait analysis methods traditionally diverged between these domains but are now merging their complementary strengths to unlock new possibilities. Using large ground reaction force (GRF) datasets for gait recognition is a way to uncover subtle variations that define individual gait patterns. Previously, this was done by developing and evaluating machine learning models on the same individuals or the same dataset, potentially biasing findings towards population samples or walking conditions. This study introduces a new method for analysing gait variation across individuals, groups and datasets to explore how demographics and walking conditions shape individual gait patterns. Machine learning models were implemented using numerous configurations of four large walking GRF datasets from different countries (740 individuals, 7400 samples) and analysed using explainable artificial intelligence tools. Recognition accuracy ranged from 52 to 100%, with factors like footwear, walking speed and body mass playing interactive roles in defining gait. Models developed with individuals walking in personal footwear at multiple speeds effectively recognized novel individuals across populations and conditions (89-99% accuracy). Integrating force platform hardware and gait recognition software could be invaluable for reading the complex stories of human walking.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 221","pages":"20240565"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0565","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human walking gait is a personal story written by the body, a tool for understanding biological identity in healthcare and security. Gait analysis methods traditionally diverged between these domains but are now merging their complementary strengths to unlock new possibilities. Using large ground reaction force (GRF) datasets for gait recognition is a way to uncover subtle variations that define individual gait patterns. Previously, this was done by developing and evaluating machine learning models on the same individuals or the same dataset, potentially biasing findings towards population samples or walking conditions. This study introduces a new method for analysing gait variation across individuals, groups and datasets to explore how demographics and walking conditions shape individual gait patterns. Machine learning models were implemented using numerous configurations of four large walking GRF datasets from different countries (740 individuals, 7400 samples) and analysed using explainable artificial intelligence tools. Recognition accuracy ranged from 52 to 100%, with factors like footwear, walking speed and body mass playing interactive roles in defining gait. Models developed with individuals walking in personal footwear at multiple speeds effectively recognized novel individuals across populations and conditions (89-99% accuracy). Integrating force platform hardware and gait recognition software could be invaluable for reading the complex stories of human walking.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.