TDP1 splice-site mutation causes HAP1 cell hypersensitivity to topoisomerase I inhibition.

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chen Gang Goh, Aldo S Bader, Tuan-Anh Tran, Rimma Belotserkovskaya, Giuseppina D'Alessandro, Stephen P Jackson
{"title":"TDP1 splice-site mutation causes HAP1 cell hypersensitivity to topoisomerase I inhibition.","authors":"Chen Gang Goh, Aldo S Bader, Tuan-Anh Tran, Rimma Belotserkovskaya, Giuseppina D'Alessandro, Stephen P Jackson","doi":"10.1093/nar/gkae1163","DOIUrl":null,"url":null,"abstract":"<p><p>HAP1 is a near-haploid human cell line commonly used for mutagenesis and genome editing studies due to its hemizygous nature. We noticed an unusual hypersensitivity of HAP1 to camptothecin, an antineoplastic drug that stabilizes topoisomerase I cleavage complexes (TOP1ccs). We have attributed this hypersensitivity to a deficiency of TDP1, a key phosphodiesterase involved in resolving abortive TOP1ccs. Through whole-exome sequencing and subsequent restoration of TDP1 protein via CRISPR-Cas9 endogenous genome editing, we demonstrate that TDP1 deficiency and camptothecin hypersensitivity in HAP1 cells are a result of a splice-site mutation (TDP1 c.660-1G > A) that causes exon skipping and TDP1 loss of function. The lack of TDP1 in HAP1 cells should be considered when studying topoisomerase-associated DNA lesions and when generalizing mechanisms of DNA damage repair using HAP1 cells. Finally, we also report the generation of HAP1 STAR clones with restored TDP1 expression and function, which may be useful in further studies to probe cellular phenotypes relating to TOP1cc repair.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

HAP1 is a near-haploid human cell line commonly used for mutagenesis and genome editing studies due to its hemizygous nature. We noticed an unusual hypersensitivity of HAP1 to camptothecin, an antineoplastic drug that stabilizes topoisomerase I cleavage complexes (TOP1ccs). We have attributed this hypersensitivity to a deficiency of TDP1, a key phosphodiesterase involved in resolving abortive TOP1ccs. Through whole-exome sequencing and subsequent restoration of TDP1 protein via CRISPR-Cas9 endogenous genome editing, we demonstrate that TDP1 deficiency and camptothecin hypersensitivity in HAP1 cells are a result of a splice-site mutation (TDP1 c.660-1G > A) that causes exon skipping and TDP1 loss of function. The lack of TDP1 in HAP1 cells should be considered when studying topoisomerase-associated DNA lesions and when generalizing mechanisms of DNA damage repair using HAP1 cells. Finally, we also report the generation of HAP1 STAR clones with restored TDP1 expression and function, which may be useful in further studies to probe cellular phenotypes relating to TOP1cc repair.

TDP1剪接位点突变引起HAP1细胞对拓扑异构酶I抑制的超敏反应。
HAP1是一种近单倍体人类细胞系,由于其半合子性质,通常用于诱变和基因组编辑研究。我们注意到HAP1对喜树碱异常敏感,喜树碱是一种稳定拓扑异构酶I切割复合物(TOP1ccs)的抗肿瘤药物。我们将这种过敏归因于TDP1的缺乏,TDP1是一种关键的磷酸二酯酶,参与溶解流产的top1cc。通过全外显子组测序和随后通过CRISPR-Cas9内源性基因组编辑恢复TDP1蛋白,我们证明了HAP1细胞中的TDP1缺陷和喜树碱过敏是剪接位点突变(TDP1 c.660-1G > a)导致外显子跳变和TDP1功能丧失的结果。在研究拓扑异构酶相关的DNA病变和推广HAP1细胞修复DNA损伤的机制时,应该考虑HAP1细胞中TDP1的缺乏。最后,我们还报道了TDP1表达和功能恢复的HAP1 STAR克隆的产生,这可能有助于进一步研究与TOP1cc修复相关的细胞表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信