Leveraging generative neural networks for accurate, diverse, and robust nanoparticle design†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tanzim Rahman, Ahnaf Tahmid, Shifat E. Arman, Tanvir Ahmed, Zarin Tasnim Rakhy, Harinarayan Das, Mahmudur Rahman, Abul Kalam Azad, Md. Wahadoszamen and Ahsan Habib
{"title":"Leveraging generative neural networks for accurate, diverse, and robust nanoparticle design†","authors":"Tanzim Rahman, Ahnaf Tahmid, Shifat E. Arman, Tanvir Ahmed, Zarin Tasnim Rakhy, Harinarayan Das, Mahmudur Rahman, Abul Kalam Azad, Md. Wahadoszamen and Ahsan Habib","doi":"10.1039/D4NA00859F","DOIUrl":null,"url":null,"abstract":"<p >Tandem neural networks for inverse design can only make single predictions, which limits the diversity of predicted structures. Here, we use conditional variational autoencoder (cVAE) for the inverse design of core–shell nanoparticles. cVAE is a type of generative neural network that generates multiple valid solutions for the same input condition. We generate a dataset from Mie theory simulations, including ten commonly used materials in plasmonic core–shell nanoparticle synthesis. We compare the performance of cVAE with that of the tandem model. Our cVAE model shows higher accuracy with a lower mean absolute error (MAE) of 0.013 compared to 0.046 for the tandem model. Robustness analysis with 100 test spectra confirms the improved reliability and diversity of cVAE. To validate the effectiveness of the cVAE model, we synthesize Au@Ag core–shell nanoparticles. cVAE model offers high accuracy in predicting material composition and spectral features. Our study shows the potential of cVAEs as generative neural networks in producing accurate, diverse, and robust nanoparticle designs.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 2","pages":" 634-642"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d4na00859f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tandem neural networks for inverse design can only make single predictions, which limits the diversity of predicted structures. Here, we use conditional variational autoencoder (cVAE) for the inverse design of core–shell nanoparticles. cVAE is a type of generative neural network that generates multiple valid solutions for the same input condition. We generate a dataset from Mie theory simulations, including ten commonly used materials in plasmonic core–shell nanoparticle synthesis. We compare the performance of cVAE with that of the tandem model. Our cVAE model shows higher accuracy with a lower mean absolute error (MAE) of 0.013 compared to 0.046 for the tandem model. Robustness analysis with 100 test spectra confirms the improved reliability and diversity of cVAE. To validate the effectiveness of the cVAE model, we synthesize Au@Ag core–shell nanoparticles. cVAE model offers high accuracy in predicting material composition and spectral features. Our study shows the potential of cVAEs as generative neural networks in producing accurate, diverse, and robust nanoparticle designs.

Abstract Image

利用生成神经网络的准确,多样和稳健的纳米颗粒设计。
用于逆设计的串联神经网络只能进行单一的预测,限制了预测结构的多样性。在这里,我们使用条件变分自编码器(cVAE)进行核壳纳米粒子的反设计。cVAE是一种针对相同输入条件生成多个有效解的生成式神经网络。我们从Mie理论模拟中生成了一个数据集,包括等离子体核壳纳米颗粒合成中常用的十种材料。我们比较了cVAE与串联模型的性能。与串联模型的平均绝对误差(MAE)为0.046相比,cVAE模型具有更高的精度,平均绝对误差(MAE)为0.013。100个测试谱的鲁棒性分析证实了cVAE提高了可靠性和多样性。为了验证cVAE模型的有效性,我们合成了Au@Ag核壳纳米颗粒。cVAE模型在预测材料成分和光谱特征方面具有较高的精度。我们的研究显示了cVAEs作为生成神经网络在产生精确、多样和健壮的纳米颗粒设计方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信