Zinc Homeostasis Plays Important Roles in Hypoxia Tolerance: A Study Conducted Clinically and In Vitro.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Yan Guo, Chao Yu, Zhongsheng Lu, Menglan Zhang, Qiang Zhang, Xiao Liu
{"title":"Zinc Homeostasis Plays Important Roles in Hypoxia Tolerance: A Study Conducted Clinically and <i>In Vitro</i>.","authors":"Yan Guo, Chao Yu, Zhongsheng Lu, Menglan Zhang, Qiang Zhang, Xiao Liu","doi":"10.1089/ham.2024.0036","DOIUrl":null,"url":null,"abstract":"<p><p>Guo, Yan, Chao Yu, Zhongsheng Lu, Menglan Zhang, Qiang Zhang, and Xiao Liu. Zinc homeostasis plays important roles in hypoxia tolerance: A study conducted clinically and <i>in vitro</i>. <i>High Alt Med Biol.</i> 00:00-00, 2024. <b><i>Objective:</i></b> High-altitude environments pose significant challenges to human physiology due to reduced oxygen availability, often resulting in altitude-related illnesses such as high-altitude cerebral edema (HACE). This study focuses on understanding the role of zinc homeostasis in enhancing hypoxia tolerance, which may be pivotal in mitigating the adverse effects of such illnesses. <b><i>Methods:</i></b> The study involved healthy individuals from high-altitude (4,500-5,000 m) and low-altitude areas (0-200 m), as well as patients with HACE. Blood samples were collected and analyzed. Additionally, a hypoxic model was developed using human brain microvascular endothelial cells (HBMECs), and zinc intervention was implemented. <b><i>Results:</i></b> In the blood samples of patients with HACE and those of healthy individuals, there were over 4,000 differentially expressed genes (DEGs), with more than 300 of them linked to zinc. Among these zinc-associated genes, only carbonic anhydrase I (CA1) exhibited a substantial upregulation in expression, while the expression of others was notably downregulated. Compared with the high-altitude group, hemoglobin (Hb) (14.7 vs. 19.5 g/dl) and plasma zinc (37.0 vs. 94.0 mmol/dl) were lower in HACE, while CA1 (55.4 vs. 8.6 g/l) was elevated (<i>p</i> < 0.01). <i>In vitro</i> studies confirmed that exposure to hypoxia (O<sub>2</sub> 8%-8.5%, 24 hours) inhibited HBMECs proliferation and migration, increased apoptosis and necrosis, and led to abnormal expression of CA1 and various zinc transport proteins. However, zinc intervention (6 μM, 24 hours) significantly mitigated these adverse effects and improved the cell's ability to tolerate hypoxia. <b><i>Conclusion:</i></b> Zinc homeostasis was crucial for hypoxia tolerance. Proper zinc supplementation could potentially alleviate symptoms associated with hypoxia intolerance, such as altitude sickness, but further confirmation was needed.</p>","PeriodicalId":12975,"journal":{"name":"High altitude medicine & biology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High altitude medicine & biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ham.2024.0036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Guo, Yan, Chao Yu, Zhongsheng Lu, Menglan Zhang, Qiang Zhang, and Xiao Liu. Zinc homeostasis plays important roles in hypoxia tolerance: A study conducted clinically and in vitro. High Alt Med Biol. 00:00-00, 2024. Objective: High-altitude environments pose significant challenges to human physiology due to reduced oxygen availability, often resulting in altitude-related illnesses such as high-altitude cerebral edema (HACE). This study focuses on understanding the role of zinc homeostasis in enhancing hypoxia tolerance, which may be pivotal in mitigating the adverse effects of such illnesses. Methods: The study involved healthy individuals from high-altitude (4,500-5,000 m) and low-altitude areas (0-200 m), as well as patients with HACE. Blood samples were collected and analyzed. Additionally, a hypoxic model was developed using human brain microvascular endothelial cells (HBMECs), and zinc intervention was implemented. Results: In the blood samples of patients with HACE and those of healthy individuals, there were over 4,000 differentially expressed genes (DEGs), with more than 300 of them linked to zinc. Among these zinc-associated genes, only carbonic anhydrase I (CA1) exhibited a substantial upregulation in expression, while the expression of others was notably downregulated. Compared with the high-altitude group, hemoglobin (Hb) (14.7 vs. 19.5 g/dl) and plasma zinc (37.0 vs. 94.0 mmol/dl) were lower in HACE, while CA1 (55.4 vs. 8.6 g/l) was elevated (p < 0.01). In vitro studies confirmed that exposure to hypoxia (O2 8%-8.5%, 24 hours) inhibited HBMECs proliferation and migration, increased apoptosis and necrosis, and led to abnormal expression of CA1 and various zinc transport proteins. However, zinc intervention (6 μM, 24 hours) significantly mitigated these adverse effects and improved the cell's ability to tolerate hypoxia. Conclusion: Zinc homeostasis was crucial for hypoxia tolerance. Proper zinc supplementation could potentially alleviate symptoms associated with hypoxia intolerance, such as altitude sickness, but further confirmation was needed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
High altitude medicine & biology
High altitude medicine & biology 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.80
自引率
9.50%
发文量
44
审稿时长
>12 weeks
期刊介绍: High Altitude Medicine & Biology is the only peer-reviewed journal covering the medical and biological issues that impact human life at high altitudes. The Journal delivers critical findings on the impact of high altitude on lung and heart disease, appetite and weight loss, pulmonary and cerebral edema, hypertension, dehydration, infertility, and other diseases. It covers the full spectrum of high altitude life sciences from pathology to human and animal ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信