Identification of hub genes and biological pathways related to central post-stroke pain in ischemic stroke.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fude Liu, Yawen Cheng, Xiangning Han, Ning Zhu, Shiliang Jiang, Jiahao Li, Wenlong Ma, Jia Yu
{"title":"Identification of hub genes and biological pathways related to central post-stroke pain in ischemic stroke.","authors":"Fude Liu, Yawen Cheng, Xiangning Han, Ning Zhu, Shiliang Jiang, Jiahao Li, Wenlong Ma, Jia Yu","doi":"10.1093/hmg/ddae178","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation aims to screen ischemic stroke (IS)-related hub genes of central post-stroke pain (CPSP) from public databases and predict their potential roles through bioinformatics analysis to better interpret CPSP in IS. First, based on differential analysis, Venn analysis, and enrichment analyses, we identified 13 differently expressed genes in CPSP (CPSP-DEGs) related to the TNF signaling pathway, Vascular smooth muscle contraction, and IL-17 signaling pathway. Subsequently, through screening and analysis of the PPI network constructed by the Search Tool for the Retrieval of Interacting Genes (STRING) database, we obtained 3 CPSP-related hub genes (CD163, MMP9, and ARG1). They were all highly expressed in the IS group, exhibiting good diagnostic performance, with area under curve (AUC) value > 0.85. The immune-related analysis demonstrated that the infiltration levels of various immune cells in the IS group and the normal group were substantially different. In addition, by utilizing some online websites, we not only predicted some microRNAs (miRNAs) and transcription factors (TFs) that may target hub genes but also mined small molecular drugs that may target differentially expressed genes (DEGs) in IS. In conclusion, this project first investigated the role of CPSP-related genes in IS and identified 3 hub genes. At the same time, we predicted some miRNAs, TFs, and candidate drugs that may target hub genes. Our research uncovered the potential mechanism of CPSP-related genes in IS from multiple perspectives. Furthermore, it also laid a research foundation for the future study of the mechanisms of IS disease.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae178","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation aims to screen ischemic stroke (IS)-related hub genes of central post-stroke pain (CPSP) from public databases and predict their potential roles through bioinformatics analysis to better interpret CPSP in IS. First, based on differential analysis, Venn analysis, and enrichment analyses, we identified 13 differently expressed genes in CPSP (CPSP-DEGs) related to the TNF signaling pathway, Vascular smooth muscle contraction, and IL-17 signaling pathway. Subsequently, through screening and analysis of the PPI network constructed by the Search Tool for the Retrieval of Interacting Genes (STRING) database, we obtained 3 CPSP-related hub genes (CD163, MMP9, and ARG1). They were all highly expressed in the IS group, exhibiting good diagnostic performance, with area under curve (AUC) value > 0.85. The immune-related analysis demonstrated that the infiltration levels of various immune cells in the IS group and the normal group were substantially different. In addition, by utilizing some online websites, we not only predicted some microRNAs (miRNAs) and transcription factors (TFs) that may target hub genes but also mined small molecular drugs that may target differentially expressed genes (DEGs) in IS. In conclusion, this project first investigated the role of CPSP-related genes in IS and identified 3 hub genes. At the same time, we predicted some miRNAs, TFs, and candidate drugs that may target hub genes. Our research uncovered the potential mechanism of CPSP-related genes in IS from multiple perspectives. Furthermore, it also laid a research foundation for the future study of the mechanisms of IS disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信