Paralogous Gene Recruitment in Multiple Families Constitutes Genetic Architecture and Robustness of Pod Dehiscence in Legumes.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Bin Yong, Jana Balarynová, Bingbing Li, Denisa Konečná, Jorge Rencoret, José C Del Río, Petr Smýkal, Chaoying He
{"title":"Paralogous Gene Recruitment in Multiple Families Constitutes Genetic Architecture and Robustness of Pod Dehiscence in Legumes.","authors":"Bin Yong, Jana Balarynová, Bingbing Li, Denisa Konečná, Jorge Rencoret, José C Del Río, Petr Smýkal, Chaoying He","doi":"10.1093/gbe/evae267","DOIUrl":null,"url":null,"abstract":"<p><p>Pod dehiscence facilitates seed dispersal in wild legumes while indehiscence is a key domestication trait in cultivated ones. However, the evolutionary genetic mechanisms underlying its diversity are largely unclear. In this study, we compared transcriptomes of two warm-season (Glycine spp. and Phaseolus spp.) and two cool-season (Pisum spp. and Medicago ruthenica) legumes in analysis of dehiscent and indehiscent pod genotypes. Differentially expressed genes in AP2/ERF-like transcription factors and seven structural gene families, including lactoperoxidase, laccase, and cellulose synthase-interactive proteins, which are involved in secondary cell wall component accumulation, were identified to exert key roles in pod dehiscence variation. In accordance with this, higher lignin and cellulose contents were observed in pod secondary cell wall of dehiscent accessions of soybean and pea; however, the variation patterns of lignin polymers in soybean (accumulation) and pea (proportion) differed between dehiscent and indehiscent pods. Moreover, genome-wide comparative analysis revealed that orthogroups represented <1% of all identified differentially expressed genes could be traced among the four genera of legumes, while recruiting paralogous members may constitute the genetic robustness of legume pod dehiscence. This study compared the genetic mechanism among several legumes in pod dehiscence formation and revealed a compensating role of paralogous redundancy of involved gene families in seed dispersal, which can guide crop breeding.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae267","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pod dehiscence facilitates seed dispersal in wild legumes while indehiscence is a key domestication trait in cultivated ones. However, the evolutionary genetic mechanisms underlying its diversity are largely unclear. In this study, we compared transcriptomes of two warm-season (Glycine spp. and Phaseolus spp.) and two cool-season (Pisum spp. and Medicago ruthenica) legumes in analysis of dehiscent and indehiscent pod genotypes. Differentially expressed genes in AP2/ERF-like transcription factors and seven structural gene families, including lactoperoxidase, laccase, and cellulose synthase-interactive proteins, which are involved in secondary cell wall component accumulation, were identified to exert key roles in pod dehiscence variation. In accordance with this, higher lignin and cellulose contents were observed in pod secondary cell wall of dehiscent accessions of soybean and pea; however, the variation patterns of lignin polymers in soybean (accumulation) and pea (proportion) differed between dehiscent and indehiscent pods. Moreover, genome-wide comparative analysis revealed that orthogroups represented <1% of all identified differentially expressed genes could be traced among the four genera of legumes, while recruiting paralogous members may constitute the genetic robustness of legume pod dehiscence. This study compared the genetic mechanism among several legumes in pod dehiscence formation and revealed a compensating role of paralogous redundancy of involved gene families in seed dispersal, which can guide crop breeding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信