De Novo Genome Assembly and Annotation for the Synanthropic Webbing Clothes Moth (Tineola bisselliella): A Globally Distributed, Economically Important Pest.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Jasmine D Alqassar, Hannah E Aichelman, Isabel A Novick, Sean P Mullen
{"title":"De Novo Genome Assembly and Annotation for the Synanthropic Webbing Clothes Moth (Tineola bisselliella): A Globally Distributed, Economically Important Pest.","authors":"Jasmine D Alqassar, Hannah E Aichelman, Isabel A Novick, Sean P Mullen","doi":"10.1093/gbe/evae266","DOIUrl":null,"url":null,"abstract":"<p><p>Tineola bisselliella, the webbing clothes moth, is an economically important, globally distributed synanthropic pest species and member of the basal moth lineage Tineidae. These moths are facultatively keratinophagous, and their larvae can cause extensive damage, particularly to clothing, textiles, and museum specimens. Despite the economic and phylogenetic importance of T. bisselliella, there is a lack of quality genomic resources for this, or for other species within the Tineidae family. The T. bisselliella genome assembly presented here consists of 30 pseudochromosomes (29 autosomes and 1 Z chromosome) produced using synteny alignment of a preliminary contig-level assembly (256 contigs) to a closely related species, Tinea pellionella. The resulting final pseudochromosome-level assembly is 243.630 Mb and has an N50 length of 8.708 Mb. The assembly is highly contiguous and has similar or improved quality compared to other available Tineidae genomes, with 93.1% (91.8% single copy and 1.3% duplicated) of lepidopteran orthologs complete and present. Annotation of the pseudochromosome-level genome assembly with the transcriptome we produced ultimately yielded 11,259 annotated genes. Synteny alignments between the T. bisselliella genome assembly and other Tineidae genomes revealed evidence for numerous small rearrangements with high synteny conservation. In contrast, a synteny alignment performed between T. bisselliella and Melitaea cinxia, which is thought to have retained the ancestral karyotype (n = 31), revealed a fusion of the ancestral autosome 30 and Z chromosome that led to a reduction in T. bisselliella karyotype size. The reference quality annotated genome for T. bisselliella presented here will advance our understanding of the evolution of the lepidopteran karyotype by providing a chromosome-level genome for this basal moth lineage and provide future insights into the mechanisms underlying keratin digestion in T. bisselliella.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae266","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tineola bisselliella, the webbing clothes moth, is an economically important, globally distributed synanthropic pest species and member of the basal moth lineage Tineidae. These moths are facultatively keratinophagous, and their larvae can cause extensive damage, particularly to clothing, textiles, and museum specimens. Despite the economic and phylogenetic importance of T. bisselliella, there is a lack of quality genomic resources for this, or for other species within the Tineidae family. The T. bisselliella genome assembly presented here consists of 30 pseudochromosomes (29 autosomes and 1 Z chromosome) produced using synteny alignment of a preliminary contig-level assembly (256 contigs) to a closely related species, Tinea pellionella. The resulting final pseudochromosome-level assembly is 243.630 Mb and has an N50 length of 8.708 Mb. The assembly is highly contiguous and has similar or improved quality compared to other available Tineidae genomes, with 93.1% (91.8% single copy and 1.3% duplicated) of lepidopteran orthologs complete and present. Annotation of the pseudochromosome-level genome assembly with the transcriptome we produced ultimately yielded 11,259 annotated genes. Synteny alignments between the T. bisselliella genome assembly and other Tineidae genomes revealed evidence for numerous small rearrangements with high synteny conservation. In contrast, a synteny alignment performed between T. bisselliella and Melitaea cinxia, which is thought to have retained the ancestral karyotype (n = 31), revealed a fusion of the ancestral autosome 30 and Z chromosome that led to a reduction in T. bisselliella karyotype size. The reference quality annotated genome for T. bisselliella presented here will advance our understanding of the evolution of the lepidopteran karyotype by providing a chromosome-level genome for this basal moth lineage and provide future insights into the mechanisms underlying keratin digestion in T. bisselliella.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信