{"title":"Investigation of pH-dependent <sup>1</sup>H NMR urine metabolite profiles for diagnosis of obesity-related disordering.","authors":"Dan-Ni Wu, Erickson Fajiculay, Chao-Ping Hsu, Chun-Mei Hu, Li-Wen Lee, Der-Lii M Tzou","doi":"10.1038/s41366-024-01695-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human urine is highly favorable for <sup>1</sup>H NMR metabolomics analyses of obesity-related diseases, such as non-alcoholic fatty liver, type 2 diabetes, and hyperlipidemia (HL), due to its non-invasiveness and ease of large-scale collection. However, the wide range of intrinsic urine pH (5.5-8.5) results in inevitably chemical shift and signal intensity modulations in the <sup>1</sup>H NMR spectra. For patients where acidic urine pH is closely linked to obesity-related disease phenotypes, the pH-dependent modulations complicate the spectral analysis and deteriorate quantifications of urine metabolites.</p><p><strong>Methods: </strong>We characterized human urine metabolites by NMR at intrinsic urine pH, across urine pH 4.5 to 9.5, to account for pH-dependent modulations. A pH-dependent chemical shift database for quantifiable urine metabolites was generated and integrated into a \"pH intelligence\" program developed for quantifications of pH-dependent modulations at various pH. The <sup>1</sup>H NMR spectra of urines collected from patients with Ob-HL and healthy controls were compared to uncover potential metabolic biomarkers of Ob-HL disease.</p><p><strong>Results: </strong>Three urine metabolites were unveiled by pH-dependent NMR approach, i.e., TMAO, glycine, and pyruvic acid, with VIP score >1.0 and significant q-value < 0.05, that represent as potential biomarkers for discriminating Ob-HL from healthy controls. Further ROC-AUC analyses revealed that TMAO alone achieved the highest diagnostic accuracy (AUC 0.902), surpassed to that obtained by neutralizing pH approach (AUC 0.549) and enabled better recovering potential urine metabolites from the Ob-HL disease phenotypes.</p><p><strong>Conclusions: </strong>We concluded that <sup>1</sup>H NMR-derived urine metabolite profile represents a snapshot that can reveal the physiological condition of humans in either a healthy or diseased state under intrinsic urine pH. We demonstrated a systematic analysis of pH-dependent modulations on the human urine metabolite signals and further developed software for quantification of urine metabolite profiles with high accuracy, enabling the uncovering of potential metabolite biomarkers in clinical diagnosis applications.</p>","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41366-024-01695-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human urine is highly favorable for 1H NMR metabolomics analyses of obesity-related diseases, such as non-alcoholic fatty liver, type 2 diabetes, and hyperlipidemia (HL), due to its non-invasiveness and ease of large-scale collection. However, the wide range of intrinsic urine pH (5.5-8.5) results in inevitably chemical shift and signal intensity modulations in the 1H NMR spectra. For patients where acidic urine pH is closely linked to obesity-related disease phenotypes, the pH-dependent modulations complicate the spectral analysis and deteriorate quantifications of urine metabolites.
Methods: We characterized human urine metabolites by NMR at intrinsic urine pH, across urine pH 4.5 to 9.5, to account for pH-dependent modulations. A pH-dependent chemical shift database for quantifiable urine metabolites was generated and integrated into a "pH intelligence" program developed for quantifications of pH-dependent modulations at various pH. The 1H NMR spectra of urines collected from patients with Ob-HL and healthy controls were compared to uncover potential metabolic biomarkers of Ob-HL disease.
Results: Three urine metabolites were unveiled by pH-dependent NMR approach, i.e., TMAO, glycine, and pyruvic acid, with VIP score >1.0 and significant q-value < 0.05, that represent as potential biomarkers for discriminating Ob-HL from healthy controls. Further ROC-AUC analyses revealed that TMAO alone achieved the highest diagnostic accuracy (AUC 0.902), surpassed to that obtained by neutralizing pH approach (AUC 0.549) and enabled better recovering potential urine metabolites from the Ob-HL disease phenotypes.
Conclusions: We concluded that 1H NMR-derived urine metabolite profile represents a snapshot that can reveal the physiological condition of humans in either a healthy or diseased state under intrinsic urine pH. We demonstrated a systematic analysis of pH-dependent modulations on the human urine metabolite signals and further developed software for quantification of urine metabolite profiles with high accuracy, enabling the uncovering of potential metabolite biomarkers in clinical diagnosis applications.
期刊介绍:
The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders.
We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.