An exploration into the diagnostic capabilities of microRNAs for myocardial infarction using machine learning.

IF 5.7 2区 生物学 Q1 BIOLOGY
Mehrdad Samadishadlou, Reza Rahbarghazi, Kaveh Kavousi, Farhad Bani
{"title":"An exploration into the diagnostic capabilities of microRNAs for myocardial infarction using machine learning.","authors":"Mehrdad Samadishadlou, Reza Rahbarghazi, Kaveh Kavousi, Farhad Bani","doi":"10.1186/s13062-024-00543-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRNAs) have shown potential as diagnostic biomarkers for myocardial infarction (MI) due to their early dysregulation and stability in circulation after MI. Moreover, they play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation.</p><p><strong>Methods: </strong>This study aimed to identify a miRNA biomarker panel for early-stage MI detection using bioinformatics and machine learning (ML) methods. miRNA expression data were obtained for early-stage MI patients and healthy controls from the Gene Expression Omnibus. Separate datasets were allocated for training and independent testing. Differential expression analysis was performed to identify dysregulated miRNAs in the training set. The least absolute shrinkage and selection operator (LASSO) was applied for feature selection to prioritize relevant miRNAs associated with MI. The selected miRNAs were used to develop ML models including support vector machine, Gradient Boosted, XGBoost, and a hard voting ensemble (HVE).</p><p><strong>Results: </strong>Differential expression analysis discovered 99 dysregulated miRNAs in the training set. LASSO feature selection prioritized 21 miRNAs. Ten miRNAs were identified in both the LASSO subset and independent test set. The HVE model trained with the selected miRNAs achieved an accuracy of 0.86 and AUC of 0.83 on the independent test set.</p><p><strong>Conclusions: </strong>An integrated framework for robust miRNA selection from omics data shows promise for developing accurate diagnostic models for early-stage MI detection. The HVE model demonstrated good performance despite differences between training and test datasets.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"127"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00543-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: MicroRNAs (miRNAs) have shown potential as diagnostic biomarkers for myocardial infarction (MI) due to their early dysregulation and stability in circulation after MI. Moreover, they play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation.

Methods: This study aimed to identify a miRNA biomarker panel for early-stage MI detection using bioinformatics and machine learning (ML) methods. miRNA expression data were obtained for early-stage MI patients and healthy controls from the Gene Expression Omnibus. Separate datasets were allocated for training and independent testing. Differential expression analysis was performed to identify dysregulated miRNAs in the training set. The least absolute shrinkage and selection operator (LASSO) was applied for feature selection to prioritize relevant miRNAs associated with MI. The selected miRNAs were used to develop ML models including support vector machine, Gradient Boosted, XGBoost, and a hard voting ensemble (HVE).

Results: Differential expression analysis discovered 99 dysregulated miRNAs in the training set. LASSO feature selection prioritized 21 miRNAs. Ten miRNAs were identified in both the LASSO subset and independent test set. The HVE model trained with the selected miRNAs achieved an accuracy of 0.86 and AUC of 0.83 on the independent test set.

Conclusions: An integrated framework for robust miRNA selection from omics data shows promise for developing accurate diagnostic models for early-stage MI detection. The HVE model demonstrated good performance despite differences between training and test datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信