Multidimensional nanofibrous hydrogels integrated triculture system for advanced myocardial regeneration.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Dongwoo Kim, Yeong Hwan Kim, Gyubok Lee, Eun-Cheol Lee, Suk Ho Bhang, Kangwon Lee
{"title":"Multidimensional nanofibrous hydrogels integrated triculture system for advanced myocardial regeneration.","authors":"Dongwoo Kim, Yeong Hwan Kim, Gyubok Lee, Eun-Cheol Lee, Suk Ho Bhang, Kangwon Lee","doi":"10.1088/1758-5090/ad9cc3","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction (MI) remains a leading cause of mortality worldwide, posing a significant challenge to healthcare systems. The limited regenerative capacity of cardiac tissue following MI results in chronic cardiac dysfunction, highlighting the urgent need for innovative therapeutic strategies. In this study, we explored the application of a multidimensional nanofibrous hydrogel for myocardial regeneration. We developed a composite hydrogel system by integrating fibrin, polycaprolactone (PCL), and alginate. In this system, fibrin supported cell proliferation and significantly enhanced angiogenesis when combined with human umbilical vein endothelial cells (HUVECs). PCL contributed to the alignment of encapsulated cells, improving their organization within the scaffold. Adipose-derived stem cells (ADSCs) were encapsulated within the hydrogel for their versatile regenerative potential, while C2C12 cells were incorporated for their ability to form muscle tissue. Additionally, the inclusion of alginate not only enhanced the mechanical properties of the hydrogel to better match the biomechanical demands of cardiac tissue but also played a critical role in reducing the immune response, thereby improving the system's biocompatibility. This study presents an advanced platform for myocardial regeneration using a nanofibrous hydrogel system designed to meet the dual requirements of mechanical robustness and cellular compatibility essential for cardiac tissue engineering. The triculture system, consisting of ADSCs, C2C12 cells, and HUVECs, harnesses the regenerative capabilities of each cell type, promoting both angiogenesis and tissue regeneration. This comprehensive approach addresses the immediate needs for cellular survival and integration while effectively overcoming long-term mechanical and immunological challenges.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad9cc3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction (MI) remains a leading cause of mortality worldwide, posing a significant challenge to healthcare systems. The limited regenerative capacity of cardiac tissue following MI results in chronic cardiac dysfunction, highlighting the urgent need for innovative therapeutic strategies. In this study, we explored the application of a multidimensional nanofibrous hydrogel for myocardial regeneration. We developed a composite hydrogel system by integrating fibrin, polycaprolactone (PCL), and alginate. In this system, fibrin supported cell proliferation and significantly enhanced angiogenesis when combined with human umbilical vein endothelial cells (HUVECs). PCL contributed to the alignment of encapsulated cells, improving their organization within the scaffold. Adipose-derived stem cells (ADSCs) were encapsulated within the hydrogel for their versatile regenerative potential, while C2C12 cells were incorporated for their ability to form muscle tissue. Additionally, the inclusion of alginate not only enhanced the mechanical properties of the hydrogel to better match the biomechanical demands of cardiac tissue but also played a critical role in reducing the immune response, thereby improving the system's biocompatibility. This study presents an advanced platform for myocardial regeneration using a nanofibrous hydrogel system designed to meet the dual requirements of mechanical robustness and cellular compatibility essential for cardiac tissue engineering. The triculture system, consisting of ADSCs, C2C12 cells, and HUVECs, harnesses the regenerative capabilities of each cell type, promoting both angiogenesis and tissue regeneration. This comprehensive approach addresses the immediate needs for cellular survival and integration while effectively overcoming long-term mechanical and immunological challenges.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信