Antibiotic SERS spectral analysis based on data augmentation and attention mechanism strategy.

IF 1.8 4区 化学 Q3 CHEMISTRY, ANALYTICAL
Hang Zhao, Min Zhou, Chunlin Liu, Hongheng Sun, Panshuo Zhang, Jun Ma, Xiaofeng Shi
{"title":"Antibiotic SERS spectral analysis based on data augmentation and attention mechanism strategy.","authors":"Hang Zhao, Min Zhou, Chunlin Liu, Hongheng Sun, Panshuo Zhang, Jun Ma, Xiaofeng Shi","doi":"10.1007/s44211-024-00695-4","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of Raman spectrum data has gradually transitioned into the era of machine learning. However, it is still constrained by the challenge of acquiring large volumes of raw data and the issue of losing characteristic information from spectral data. In this paper, we propose a strategy that combines data amplification and attention mechanisms for analyzing antibiotic spectral data. Firstly, a Generative Adversarial Network was employed to amplify the SERS spectrum of eight antibiotics by 10 times, to augment the dataset to fulfill the requirements of the neural network. Then, the amplified data is input into a one-dimensional convolutional neural network with an attentional mechanism module, which enables a more accurate capture of spectral feature information. The one-dimensional convolutional neural network achieved a 97.5% accuracy in classifying eight antibiotics. The accuracy of the four mixtures within the same class was 89.4%.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-024-00695-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of Raman spectrum data has gradually transitioned into the era of machine learning. However, it is still constrained by the challenge of acquiring large volumes of raw data and the issue of losing characteristic information from spectral data. In this paper, we propose a strategy that combines data amplification and attention mechanisms for analyzing antibiotic spectral data. Firstly, a Generative Adversarial Network was employed to amplify the SERS spectrum of eight antibiotics by 10 times, to augment the dataset to fulfill the requirements of the neural network. Then, the amplified data is input into a one-dimensional convolutional neural network with an attentional mechanism module, which enables a more accurate capture of spectral feature information. The one-dimensional convolutional neural network achieved a 97.5% accuracy in classifying eight antibiotics. The accuracy of the four mixtures within the same class was 89.4%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Sciences
Analytical Sciences 化学-分析化学
CiteScore
2.90
自引率
18.80%
发文量
232
审稿时长
1 months
期刊介绍: Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods. This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信