Purinergic signaling by TCRαβ+ double-negative T regulatory cells ameliorates liver ischemia-reperfusion injury.

IF 18.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hua Jin, Mingyang Li, Xiyu Wang, Lu Yang, Xinjie Zhong, Zihan Zhang, Xiaotong Han, Jingjing Zhu, Mengyi Li, Songlin Wang, Simon C Robson, Guangyong Sun, Dong Zhang
{"title":"Purinergic signaling by TCRαβ<sup>+</sup> double-negative T regulatory cells ameliorates liver ischemia-reperfusion injury.","authors":"Hua Jin, Mingyang Li, Xiyu Wang, Lu Yang, Xinjie Zhong, Zihan Zhang, Xiaotong Han, Jingjing Zhu, Mengyi Li, Songlin Wang, Simon C Robson, Guangyong Sun, Dong Zhang","doi":"10.1016/j.scib.2024.11.039","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic ischemia-reperfusion injury (HIRI) is an important cause of liver injury following liver transplantation and major resections, and neutrophils are the key effector cells in HIRI. Double-negative T regulatory cells (DNT) are increasingly recognized as having critical regulatory functions in the immune system. Whether DNT expresses distinct immunoregulatory mechanisms to modulate neutrophils, as in HIRI, remains largely unknown. In this study, we found that murine and human DNT highly expressed CD39 that protected DNT from extracellular ATP-induced apoptosis and generated adenosine in tandem with CD73, to induce high levels of neutrophil apoptosis. Furthermore, extracellular adenosine enhanced DNT survival and suppressive function by upregulating survivin and NKG2D expression via the A2AR/pAKT/FOXO1 signaling pathway. Adoptive transfer of DNT ameliorated HIRI in mice through the inhibition of neutrophils in a CD39-dependent manner. Lastly, the adoptive transfer of A2ar<sup>-/-</sup> DNT validated the importance of adenosine/A2AR signaling, in promoting DNT survival and immunomodulatory function to protect against HIRI in vivo. In conclusion, purinergic signaling is crucial for DNT homeostasis in HIRI. Augmentation of CD39 or activation of A2AR signaling in DNT may provide novel therapeutic strategies to target innate immune disorders.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2024.11.039","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatic ischemia-reperfusion injury (HIRI) is an important cause of liver injury following liver transplantation and major resections, and neutrophils are the key effector cells in HIRI. Double-negative T regulatory cells (DNT) are increasingly recognized as having critical regulatory functions in the immune system. Whether DNT expresses distinct immunoregulatory mechanisms to modulate neutrophils, as in HIRI, remains largely unknown. In this study, we found that murine and human DNT highly expressed CD39 that protected DNT from extracellular ATP-induced apoptosis and generated adenosine in tandem with CD73, to induce high levels of neutrophil apoptosis. Furthermore, extracellular adenosine enhanced DNT survival and suppressive function by upregulating survivin and NKG2D expression via the A2AR/pAKT/FOXO1 signaling pathway. Adoptive transfer of DNT ameliorated HIRI in mice through the inhibition of neutrophils in a CD39-dependent manner. Lastly, the adoptive transfer of A2ar-/- DNT validated the importance of adenosine/A2AR signaling, in promoting DNT survival and immunomodulatory function to protect against HIRI in vivo. In conclusion, purinergic signaling is crucial for DNT homeostasis in HIRI. Augmentation of CD39 or activation of A2AR signaling in DNT may provide novel therapeutic strategies to target innate immune disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信