Marta Teulé-Trull, Pablo Altuna, María Arregui, Xavier Rodriguez-Ciurana, Conrado Aparicio
{"title":"Antibacterial coatings for dental implants: A systematic review.","authors":"Marta Teulé-Trull, Pablo Altuna, María Arregui, Xavier Rodriguez-Ciurana, Conrado Aparicio","doi":"10.1016/j.dental.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Despite the high survival rates of dental implants, peri-implantitis is a prevalent complication. Peri-implantitis is related to biofilm that adheres to the surface of implants and causes peri-implant chronic inflammation and bone destruction. Different surface treatments have been proposed to prevent biofilm formation. The objective of this systematic review was analyzing different types of antimicrobial coatings and identifying the most effective one(s) to control bacterial colonization over extended periods of analysis.</p><p><strong>Data, sources and study selection: </strong>We performed a bibliographic search in Pubmed and Cochrane base of articles published after 2010 to answer, according to the PICO system, the following question: What is the most effective antibacterial surface coating for dental implants? Only papers including a minimum follow-up bacteria growth analysis for at least 48 h were selected. After selection, the studies were classified using the PRISMA system. A total of 40 studies were included.</p><p><strong>Conclusions: </strong>Three main categories of coatings were identified: Antibacterial peptides, synthetic antimicrobial molecules (polymers, antibiotics, …), and metallic nanoparticles (silver). Antibacterial peptide coatings to modify dental implant surfaces have been the most studied and effective surface modification to control bacterial colonization over extended periods of incubation as they are highly potent, durable and biocompatible. However, more in vitro and pre-clinical studies are needed to assess their true potential as a technology for preventing peri-implant infections.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2024.12.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Despite the high survival rates of dental implants, peri-implantitis is a prevalent complication. Peri-implantitis is related to biofilm that adheres to the surface of implants and causes peri-implant chronic inflammation and bone destruction. Different surface treatments have been proposed to prevent biofilm formation. The objective of this systematic review was analyzing different types of antimicrobial coatings and identifying the most effective one(s) to control bacterial colonization over extended periods of analysis.
Data, sources and study selection: We performed a bibliographic search in Pubmed and Cochrane base of articles published after 2010 to answer, according to the PICO system, the following question: What is the most effective antibacterial surface coating for dental implants? Only papers including a minimum follow-up bacteria growth analysis for at least 48 h were selected. After selection, the studies were classified using the PRISMA system. A total of 40 studies were included.
Conclusions: Three main categories of coatings were identified: Antibacterial peptides, synthetic antimicrobial molecules (polymers, antibiotics, …), and metallic nanoparticles (silver). Antibacterial peptide coatings to modify dental implant surfaces have been the most studied and effective surface modification to control bacterial colonization over extended periods of incubation as they are highly potent, durable and biocompatible. However, more in vitro and pre-clinical studies are needed to assess their true potential as a technology for preventing peri-implant infections.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.