Lena Nielinger, Katharina Alker, Wolf Hiller, Leonhard H Urner
{"title":"Diffusion Coefficient Analysis by Dynamic Light Scattering Enables Determination of Critical Micelle Concentration.","authors":"Lena Nielinger, Katharina Alker, Wolf Hiller, Leonhard H Urner","doi":"10.1002/cplu.202400645","DOIUrl":null,"url":null,"abstract":"<p><p>The critical micelle concentration is an important property of supramolecular detergents. Two dynamic light scattering approaches have been developed for critical micelle concentration analysis, i. e., concentration-dependent light scattering intensity analysis and diffusion coefficient analysis. Their utility as complementary tools for a reproducible determination of critical micelle concentration remains to be clarified. Herein, we address the question which of the two approaches is more suitable for obtaining reproducible critical micelle concentration values. We systematically compare both approaches in context with common detergent classes and benchmark utility by means of literature values. Our results show that the diffusion coefficient analysis delivers reproducible critical micelle concentration values in aqueous solutions. Our findings outline a roadmap to guide the critical micelle concentration analysis of detergents by dynamic light scattering in the future.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400645"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400645","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The critical micelle concentration is an important property of supramolecular detergents. Two dynamic light scattering approaches have been developed for critical micelle concentration analysis, i. e., concentration-dependent light scattering intensity analysis and diffusion coefficient analysis. Their utility as complementary tools for a reproducible determination of critical micelle concentration remains to be clarified. Herein, we address the question which of the two approaches is more suitable for obtaining reproducible critical micelle concentration values. We systematically compare both approaches in context with common detergent classes and benchmark utility by means of literature values. Our results show that the diffusion coefficient analysis delivers reproducible critical micelle concentration values in aqueous solutions. Our findings outline a roadmap to guide the critical micelle concentration analysis of detergents by dynamic light scattering in the future.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.