Self-powered composites by bioinspired device-to-material integration.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guojiang Wen, Zhiwei Zhu, Wenrui Cai, Zhongfeng Ji, Hua Li, Chengye Ma, Ziyu Zhao, Shanshan Lv, Jiarui Yang, Xuewei Fu, Wei Yang, Yu Wang
{"title":"Self-powered composites by bioinspired device-to-material integration.","authors":"Guojiang Wen, Zhiwei Zhu, Wenrui Cai, Zhongfeng Ji, Hua Li, Chengye Ma, Ziyu Zhao, Shanshan Lv, Jiarui Yang, Xuewei Fu, Wei Yang, Yu Wang","doi":"10.1039/d4mh01297f","DOIUrl":null,"url":null,"abstract":"<p><p>The booming Internet of Things will generate diverse requirements for specialized power sources featuring customizable mechanical properties and shapes. However, these features are usually challenging to achieve with traditional batteries. Here, we report the design of self-powered composites (SPCs) by a bioinspired device-to-material integration (DTMI) strategy to break the above shackles. Specifically, commercially cheap small coin cells are employed as functional cell fillers for polymer composites, which are united by bioinspired conductive connections. Meanwhile, the polymer host is 3D printed with a bioinspired configuration to increase the energy density and achieve customizable shapes. The results show that commercial small coin cells (CR927) can work as reinforcement and functional fillers for polymer composites with a high electrochemical compression strength of 158 MPa, as revealed by <i>in situ</i> electrochemical mechanical testing. <i>Via</i> the DTMI strategy, SPCs have been successfully fabricated with either high mechanical strength or stretchability. Enabled by these features, SPCs are further demonstrated to be promising building blocks for self-powered electrical vehicles and wearable electronics. Moreover, a stretchable SPC with slidable cell-connection is demonstrated as a smart sensor for stretching rate due to an electrochemistry-polymer relaxation coupling process. This study may open an avenue for self-powered materials for electrical vehicles, robotics, wearable electronics, and beyond.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01297f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The booming Internet of Things will generate diverse requirements for specialized power sources featuring customizable mechanical properties and shapes. However, these features are usually challenging to achieve with traditional batteries. Here, we report the design of self-powered composites (SPCs) by a bioinspired device-to-material integration (DTMI) strategy to break the above shackles. Specifically, commercially cheap small coin cells are employed as functional cell fillers for polymer composites, which are united by bioinspired conductive connections. Meanwhile, the polymer host is 3D printed with a bioinspired configuration to increase the energy density and achieve customizable shapes. The results show that commercial small coin cells (CR927) can work as reinforcement and functional fillers for polymer composites with a high electrochemical compression strength of 158 MPa, as revealed by in situ electrochemical mechanical testing. Via the DTMI strategy, SPCs have been successfully fabricated with either high mechanical strength or stretchability. Enabled by these features, SPCs are further demonstrated to be promising building blocks for self-powered electrical vehicles and wearable electronics. Moreover, a stretchable SPC with slidable cell-connection is demonstrated as a smart sensor for stretching rate due to an electrochemistry-polymer relaxation coupling process. This study may open an avenue for self-powered materials for electrical vehicles, robotics, wearable electronics, and beyond.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信