{"title":"Intelligent optoelectrowetting digital microfluidic system for real-time selective parallel manipulation of biological droplet arrays.","authors":"Tianyi Wang, Shizheng Zhou, Xuekai Liu, Jianghao Zeng, Xiaohan He, Zhihang Yu, Zhiyuan Liu, Xiaomei Liu, Jing Jin, Yonggang Zhu, Liuyong Shi, Hong Yan, Teng Zhou","doi":"10.1039/d4lc00804a","DOIUrl":null,"url":null,"abstract":"<p><p>Optoelectrowetting technology generates virtual electrodes to manipulate droplets by projecting optical patterns onto the photoconductive layer. This method avoids the complex design of the physical circuitry of dielectricwetting chips, compensating for the inability to reconstruct the electrode. However, the current technology relies on operators to manually position the droplets, draw optical patterns, and preset the droplet movement paths. It lacks real-time feedback on droplet information and the ability for independent droplet control, which can lead to droplet miscontrol and contamination. This paper presents a combination of optoelectrowetting with deep learning algorithms, integrating software and a photoelectric detection platform, and develops an optoelectrowetting intelligent control system. First, a target detection algorithm identifies droplet characteristics in real-time and automatically generate virtual electrodes to control movement. Simultaneously, a tracking algorithm outputs trajectories and ID information for efficient droplet arrays tracking. The results show that the system can automatically control the movement and fusion of multiple droplets in parallel and realize the automatic arrangement and storage of disordered droplet arrays without any additional electrodes and sensing devices. Additionally, through the automated control of the system, the cell suspension can be precisely cultured in the specified medium according to experimental requirements, and the growth trend is consistent with that observed in the well plate, significantly enhancing the experiment's flexibility and accuracy. In this paper, we propose an intelligent method applicable to the automated manipulation of discrete droplets. This method would play a crucial role in advancing the applications of digital microfluidic technology in biomedicine and other fields.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00804a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Optoelectrowetting technology generates virtual electrodes to manipulate droplets by projecting optical patterns onto the photoconductive layer. This method avoids the complex design of the physical circuitry of dielectricwetting chips, compensating for the inability to reconstruct the electrode. However, the current technology relies on operators to manually position the droplets, draw optical patterns, and preset the droplet movement paths. It lacks real-time feedback on droplet information and the ability for independent droplet control, which can lead to droplet miscontrol and contamination. This paper presents a combination of optoelectrowetting with deep learning algorithms, integrating software and a photoelectric detection platform, and develops an optoelectrowetting intelligent control system. First, a target detection algorithm identifies droplet characteristics in real-time and automatically generate virtual electrodes to control movement. Simultaneously, a tracking algorithm outputs trajectories and ID information for efficient droplet arrays tracking. The results show that the system can automatically control the movement and fusion of multiple droplets in parallel and realize the automatic arrangement and storage of disordered droplet arrays without any additional electrodes and sensing devices. Additionally, through the automated control of the system, the cell suspension can be precisely cultured in the specified medium according to experimental requirements, and the growth trend is consistent with that observed in the well plate, significantly enhancing the experiment's flexibility and accuracy. In this paper, we propose an intelligent method applicable to the automated manipulation of discrete droplets. This method would play a crucial role in advancing the applications of digital microfluidic technology in biomedicine and other fields.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.