Melt Electrowriting of Elastic Scaffolds Using PEOT-PBT Multi-block Copolymer.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Armin Amirsadeghi, Pavan Kumar Reddy Gudeti, Sietse Tock, Marcus Koch, Daniele Parisi, Marleen Kamperman, Małgorzata Katarzyna Włodarczyk-Biegun
{"title":"Melt Electrowriting of Elastic Scaffolds Using PEOT-PBT Multi-block Copolymer.","authors":"Armin Amirsadeghi, Pavan Kumar Reddy Gudeti, Sietse Tock, Marcus Koch, Daniele Parisi, Marleen Kamperman, Małgorzata Katarzyna Włodarczyk-Biegun","doi":"10.1002/adhm.202402914","DOIUrl":null,"url":null,"abstract":"<p><p>Melt electrowriting (MEW) is a powerful additive manufacturing technique to produce tissue engineering scaffolds. Despite its strength, it is limited by a small number of processable polymers. Therefore, to broaden the library of materials for MEW, we investigated the printability of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT-PBT), a thermoplastic elastomer. The effect of different printing parameters and material thermal degradation are studied. It is observed that the material is stable for >60 min at a printing temperature of 195 °C in a nitrogen environment. Next, two types of designs are printed and characterized: mesh-like and semi-random scaffolds. For both types of designs, PEOT-PBT scaffolds reveal a higher yield strain, and lower Young's modulus as compared to control polycaprolactone scaffolds. Biological studies performed using mouse embryonic fibroblasts (NIH-3T3) show good cell viability and metabolic activity on all print scaffolds. SEM imaging reveals actively migrating cells on PEOT-PBT mesh scaffolds after 24 h of culture and 98.87% of pore bridging by cells after 28 days of culture. Immunofluorescence staining shows decreased expression of alpha-smooth muscle actin from day 14 to day 28 in PEOT-PBT mesh scaffolds. Overall, it is shown that melt electrowritten PEOT-PBT scaffolds have great potential for soft tissue regeneration.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402914"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402914","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Melt electrowriting (MEW) is a powerful additive manufacturing technique to produce tissue engineering scaffolds. Despite its strength, it is limited by a small number of processable polymers. Therefore, to broaden the library of materials for MEW, we investigated the printability of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT-PBT), a thermoplastic elastomer. The effect of different printing parameters and material thermal degradation are studied. It is observed that the material is stable for >60 min at a printing temperature of 195 °C in a nitrogen environment. Next, two types of designs are printed and characterized: mesh-like and semi-random scaffolds. For both types of designs, PEOT-PBT scaffolds reveal a higher yield strain, and lower Young's modulus as compared to control polycaprolactone scaffolds. Biological studies performed using mouse embryonic fibroblasts (NIH-3T3) show good cell viability and metabolic activity on all print scaffolds. SEM imaging reveals actively migrating cells on PEOT-PBT mesh scaffolds after 24 h of culture and 98.87% of pore bridging by cells after 28 days of culture. Immunofluorescence staining shows decreased expression of alpha-smooth muscle actin from day 14 to day 28 in PEOT-PBT mesh scaffolds. Overall, it is shown that melt electrowritten PEOT-PBT scaffolds have great potential for soft tissue regeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信