Glycyrrhizic Acid-Loaded Poloxamer and HPMC-Based In Situ Forming Gel of Acacia Honey for Improved Wound Dressing: Formulation Optimization and Characterization for Wound Treatment.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bhawana Jha, Ankit Majie, Kankan Roy, Wei Meng Lim, Bapi Gorain
{"title":"Glycyrrhizic Acid-Loaded Poloxamer and HPMC-Based <i>In Situ</i> Forming Gel of Acacia Honey for Improved Wound Dressing: Formulation Optimization and Characterization for Wound Treatment.","authors":"Bhawana Jha, Ankit Majie, Kankan Roy, Wei Meng Lim, Bapi Gorain","doi":"10.1021/acsabm.4c01212","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aims to formulate a stimuli-responsive <i>in situ</i> hydrogel system to codeliver acacia honey and glycyrrhizic acid for topical application that will aid in absorbing wound exudates, control microbial infestation, and produce angiogenic and antioxidant effects to accelerate wound healing. Therefore, both the natural active constituents were incorporated within an <i>in situ</i> hydrogel composed of poloxamer and hydroxypropyl methylcellulose (HPMC), where the concentrations of the polymers were optimized using Design-Expert software considering optimum values of the dependent variables, gelation temperature (34-37 °C), gelation time (<10 min), and the viscosity (2000-3500 cPs). The optimized formulation showed improved physicochemical properties such as mucoadhesiveness, porosity, swelling, and spreadability, which makes it suitable for wound application. Additionally, the <i>in situ</i> hydrogel exhibited potent <i>in vitro</i> and <i>ex vivo</i> antioxidant effects, <i>in vitro</i> antimicrobial activities, and <i>ex ovo</i> angiogenic effects. Furthermore, the optimized formulation was found to be nontoxic while tested in the HaCaT cell line and acute dermal irritation and corrosion study. The findings of the <i>in vivo</i> wound-healing studies in experimental animal models showed complete wound closure within 15 days of treatment and accelerated development of the extracellular matrix. In addition, the antioxidant, antimicrobial, angiogenic, and wound-healing properties of acacia honey and glycyrrhizic acid coloaded <i>in situ</i> hydrogel were also found to be promising when compared to the standard treatments. Overall, it can be concluded that the optimized stimuli-responsive <i>in situ</i> hydrogel containing two natural compounds could be an alternative to existing topical formulations for acute wounds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aims to formulate a stimuli-responsive in situ hydrogel system to codeliver acacia honey and glycyrrhizic acid for topical application that will aid in absorbing wound exudates, control microbial infestation, and produce angiogenic and antioxidant effects to accelerate wound healing. Therefore, both the natural active constituents were incorporated within an in situ hydrogel composed of poloxamer and hydroxypropyl methylcellulose (HPMC), where the concentrations of the polymers were optimized using Design-Expert software considering optimum values of the dependent variables, gelation temperature (34-37 °C), gelation time (<10 min), and the viscosity (2000-3500 cPs). The optimized formulation showed improved physicochemical properties such as mucoadhesiveness, porosity, swelling, and spreadability, which makes it suitable for wound application. Additionally, the in situ hydrogel exhibited potent in vitro and ex vivo antioxidant effects, in vitro antimicrobial activities, and ex ovo angiogenic effects. Furthermore, the optimized formulation was found to be nontoxic while tested in the HaCaT cell line and acute dermal irritation and corrosion study. The findings of the in vivo wound-healing studies in experimental animal models showed complete wound closure within 15 days of treatment and accelerated development of the extracellular matrix. In addition, the antioxidant, antimicrobial, angiogenic, and wound-healing properties of acacia honey and glycyrrhizic acid coloaded in situ hydrogel were also found to be promising when compared to the standard treatments. Overall, it can be concluded that the optimized stimuli-responsive in situ hydrogel containing two natural compounds could be an alternative to existing topical formulations for acute wounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信