The C-terminal PHDVC5HCH tandem domain of NSD2 is a combinatorial reader of unmodified H3K4 and tri-methylated H3K27 that regulates transcription of cell adhesion genes in multiple myeloma

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andrea Berardi, Charlotte Leonie Kaestner, Michela Ghitti, Giacomo Quilici, Paolo Cocomazzi, Jianping Li, Federico Ballabio, Chiara Zucchelli, Stefan Knapp, Jonathan D Licht, Giovanna Musco
{"title":"The C-terminal PHDVC5HCH tandem domain of NSD2 is a combinatorial reader of unmodified H3K4 and tri-methylated H3K27 that regulates transcription of cell adhesion genes in multiple myeloma","authors":"Andrea Berardi, Charlotte Leonie Kaestner, Michela Ghitti, Giacomo Quilici, Paolo Cocomazzi, Jianping Li, Federico Ballabio, Chiara Zucchelli, Stefan Knapp, Jonathan D Licht, Giovanna Musco","doi":"10.1093/nar/gkae1121","DOIUrl":null,"url":null,"abstract":"Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding. In this study, using NMR, ITC and molecular dynamics simulations, we show that the tandem PHD domain of NSD2 (PHDVC5HCHNSD2) is a combinatorial reader of unmodified histone H3K4 and tri-methylated H3K27 (H3K27me3). This is the first PHD tandem cassette known to decode the methylation status of H3K27. Importantly, in a NSD2-dependent MM cellular model, we show that expression of NSD2 mutants, engineered to disrupt the interaction between H3K27me3 and PHDVC5HCH, display in comparison to wild-type NSD2: incomplete loss of H3K27 methylation throughout the genome, decreased activation of adhesive properties and cell adhesion genes, and a decrease of the corresponding H3K27ac signal at promoters. Collectively, these data suggest that the PHDVC5HCH domain of NSD2 plays an important role in modulating gene expression and chromatin modification, providing new opportunities for pharmacological intervention.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"28 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding. In this study, using NMR, ITC and molecular dynamics simulations, we show that the tandem PHD domain of NSD2 (PHDVC5HCHNSD2) is a combinatorial reader of unmodified histone H3K4 and tri-methylated H3K27 (H3K27me3). This is the first PHD tandem cassette known to decode the methylation status of H3K27. Importantly, in a NSD2-dependent MM cellular model, we show that expression of NSD2 mutants, engineered to disrupt the interaction between H3K27me3 and PHDVC5HCH, display in comparison to wild-type NSD2: incomplete loss of H3K27 methylation throughout the genome, decreased activation of adhesive properties and cell adhesion genes, and a decrease of the corresponding H3K27ac signal at promoters. Collectively, these data suggest that the PHDVC5HCH domain of NSD2 plays an important role in modulating gene expression and chromatin modification, providing new opportunities for pharmacological intervention.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信