Eloi Schmauch, Johannes Ojanen, Kyriakitsa Galani, Juho Jalkanen, Kristiina Harju, Maija Hollmén, Hannu Kokki, Jarmo Gunn, Jari Halonen, Juha Hartikainen, Tuomas Kiviniemi, Pasi Tavi, Minna U Kaikkonen, Manolis Kellis, Suvi Linna-Kuosmanen
{"title":"QClus: a droplet filtering algorithm for enhanced snRNA-seq data quality in challenging samples","authors":"Eloi Schmauch, Johannes Ojanen, Kyriakitsa Galani, Juho Jalkanen, Kristiina Harju, Maija Hollmén, Hannu Kokki, Jarmo Gunn, Jari Halonen, Juha Hartikainen, Tuomas Kiviniemi, Pasi Tavi, Minna U Kaikkonen, Manolis Kellis, Suvi Linna-Kuosmanen","doi":"10.1093/nar/gkae1145","DOIUrl":null,"url":null,"abstract":"Single-nuclei RNA sequencing remains a challenge for many human tissues, as incomplete removal of background signal masks cell-type-specific signals and interferes with downstream analyses. Here, we present Quality Clustering (QClus), a droplet filtering algorithm targeted toward challenging samples. QClus uses additional metrics, such as cell-type-specific marker gene expression, to cluster nuclei and filter empty and highly contaminated droplets, providing reliable filtering of samples with varying number of nuclei and contamination levels. In a benchmarking analysis against seven alternative methods across six datasets, consisting of 252 samples and over 1.9 million nuclei, QClus achieved the highest quality in the greatest number of samples over all evaluated quality metrics and recorded no processing failures, while robustly retaining numbers of nuclei within the expected range. QClus combines high quality, automation and robustness with flexibility and user-adjustability, catering to diverse experimental needs and datasets.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"21 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1145","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-nuclei RNA sequencing remains a challenge for many human tissues, as incomplete removal of background signal masks cell-type-specific signals and interferes with downstream analyses. Here, we present Quality Clustering (QClus), a droplet filtering algorithm targeted toward challenging samples. QClus uses additional metrics, such as cell-type-specific marker gene expression, to cluster nuclei and filter empty and highly contaminated droplets, providing reliable filtering of samples with varying number of nuclei and contamination levels. In a benchmarking analysis against seven alternative methods across six datasets, consisting of 252 samples and over 1.9 million nuclei, QClus achieved the highest quality in the greatest number of samples over all evaluated quality metrics and recorded no processing failures, while robustly retaining numbers of nuclei within the expected range. QClus combines high quality, automation and robustness with flexibility and user-adjustability, catering to diverse experimental needs and datasets.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.