Physiological changes induced by green fodder expansion into grasslands and croplands enhance water-use efficiency in the Northeastern Tibetan Plateau

IF 5.9 1区 农林科学 Q1 AGRONOMY
Xu Wang, Jilin Yang, Jie Wang, Tong Yang, Chuchen Chang, Yanbo Zhao, Xiaocui Wu, Geli Zhang, Xiangming Xiao
{"title":"Physiological changes induced by green fodder expansion into grasslands and croplands enhance water-use efficiency in the Northeastern Tibetan Plateau","authors":"Xu Wang, Jilin Yang, Jie Wang, Tong Yang, Chuchen Chang, Yanbo Zhao, Xiaocui Wu, Geli Zhang, Xiangming Xiao","doi":"10.1016/j.agwat.2024.109218","DOIUrl":null,"url":null,"abstract":"The rapid green fodder expansion in native grassland and cropland in the northeastern Tibetan Plateau (a rain-fed region), driven by the increasing forage demand, has altered vegetation patterns and potentially affected carbon and water cycles. To clarify the elusive effects of green fodder expansion on the carbon sequestration and water consumption in this region, we examined its impacts on productivity, evapotranspiration, and water-use efficiency using a pairwise comparison approach at seasonal and annual scales in 2019. We also conducted an attribution analysis to undercover the mechanisms through which green fodder expansion influences water-use efficiency. Our results revealed that during the growing season, gross primary productivity in green fodder lands was 12.25 % and 4.14 % higher than the adjacent grasslands and croplands, respectively. Evapotranspiration was 2.89 % and 3.33 % lower in comparison. Ecosystem-level water-use efficiency was respectively 15.14 % and 6.92 % higher, while plant-level water-use efficiency increased by 4.76 % and 1.5 %, respectively. Green fodder expansion enhanced ecosystem-level water-use efficiency by increasing gross primary productivity and reducing evapotranspiration, while improvements in plant-level water-use efficiency were mainly driven by gross primary productivity increases. The changes in plant physiology and canopy structure induced by green fodder cultivation enhanced the CO<ce:inf loc=\"post\">2</ce:inf> assimilation capacity, reduced soil evaporation, and allocated more water toward transpiration, emerging as the dominant factors driving the observed changes in gross primary productivity and evapotranspiration. However, we found that green fodder planting also led to increased soil evaporation over the non-growing season, which partially offset its positive effect on water-use efficiency during the growing season. This study suggests that green fodder cultivation could be a potential solution to increasing forage supply in the northeastern Tibetan Plateau, while highlighting the necessity of reducing soil evaporation during the non-growing season to maximize the benefits of green fodder expansion.","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"2 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agwat.2024.109218","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid green fodder expansion in native grassland and cropland in the northeastern Tibetan Plateau (a rain-fed region), driven by the increasing forage demand, has altered vegetation patterns and potentially affected carbon and water cycles. To clarify the elusive effects of green fodder expansion on the carbon sequestration and water consumption in this region, we examined its impacts on productivity, evapotranspiration, and water-use efficiency using a pairwise comparison approach at seasonal and annual scales in 2019. We also conducted an attribution analysis to undercover the mechanisms through which green fodder expansion influences water-use efficiency. Our results revealed that during the growing season, gross primary productivity in green fodder lands was 12.25 % and 4.14 % higher than the adjacent grasslands and croplands, respectively. Evapotranspiration was 2.89 % and 3.33 % lower in comparison. Ecosystem-level water-use efficiency was respectively 15.14 % and 6.92 % higher, while plant-level water-use efficiency increased by 4.76 % and 1.5 %, respectively. Green fodder expansion enhanced ecosystem-level water-use efficiency by increasing gross primary productivity and reducing evapotranspiration, while improvements in plant-level water-use efficiency were mainly driven by gross primary productivity increases. The changes in plant physiology and canopy structure induced by green fodder cultivation enhanced the CO2 assimilation capacity, reduced soil evaporation, and allocated more water toward transpiration, emerging as the dominant factors driving the observed changes in gross primary productivity and evapotranspiration. However, we found that green fodder planting also led to increased soil evaporation over the non-growing season, which partially offset its positive effect on water-use efficiency during the growing season. This study suggests that green fodder cultivation could be a potential solution to increasing forage supply in the northeastern Tibetan Plateau, while highlighting the necessity of reducing soil evaporation during the non-growing season to maximize the benefits of green fodder expansion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信