Remote sensing estimation of winter wheat residue cover with dry and wet soil background

IF 5.9 1区 农林科学 Q1 AGRONOMY
Yuwei Yao, Hongrui Ren, Yujie Liu
{"title":"Remote sensing estimation of winter wheat residue cover with dry and wet soil background","authors":"Yuwei Yao, Hongrui Ren, Yujie Liu","doi":"10.1016/j.agwat.2024.109227","DOIUrl":null,"url":null,"abstract":"Estimation of crop residue cover is important for energy balance in agroecosystem and sustainable development of agriculture. We evaluated the dimidiate pixel model, widely used for estimating photosynthetic vegetation cover, for non-photosynthetic vegetation (such as winter wheat residue) cover estimation. In this study, based on spectral and cover data of winter wheat residue in dry and wet soil backgrounds, the spectral curves of winter wheat residue and soil were identified, the applicability of non-photosynthetic vegetation indices in dimidiate pixel model was analyzed, and the potential of dimidiate pixel model to estimate winter wheat residue cover was explored. In dry soil background, a lignocellulose absorption trough near 2100 nm in the spectral curve of residue-soil mixed scene was observed, and the absorption trough became deeper with increasing residue cover. The normalized difference tillage index (NDTI) had the best correlation with the measured cover of winter wheat residue, and the dimidiate pixel model constructed on the basis of this index was able to accurately estimate the winter wheat residue cover (R<ce:sup loc=\"post\">2</ce:sup>=0.64, RMSE=0.16, RE=26.32 %). In wet soil background, the ability of non-photosynthetic vegetation index to distinguish between winter wheat residue and soil was reduced by soil moisture. The results of this study provide effective insights into the estimation of winter wheat residue cover under different soil moisture conditions, and provide a useful reference for the study of remote sensing estimation of crop residue cover in a large region. The dimidiate pixel model using NDTI can also be used to estimate non-photosynthetic vegetation cover of natural vegetation.","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"9 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agwat.2024.109227","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of crop residue cover is important for energy balance in agroecosystem and sustainable development of agriculture. We evaluated the dimidiate pixel model, widely used for estimating photosynthetic vegetation cover, for non-photosynthetic vegetation (such as winter wheat residue) cover estimation. In this study, based on spectral and cover data of winter wheat residue in dry and wet soil backgrounds, the spectral curves of winter wheat residue and soil were identified, the applicability of non-photosynthetic vegetation indices in dimidiate pixel model was analyzed, and the potential of dimidiate pixel model to estimate winter wheat residue cover was explored. In dry soil background, a lignocellulose absorption trough near 2100 nm in the spectral curve of residue-soil mixed scene was observed, and the absorption trough became deeper with increasing residue cover. The normalized difference tillage index (NDTI) had the best correlation with the measured cover of winter wheat residue, and the dimidiate pixel model constructed on the basis of this index was able to accurately estimate the winter wheat residue cover (R2=0.64, RMSE=0.16, RE=26.32 %). In wet soil background, the ability of non-photosynthetic vegetation index to distinguish between winter wheat residue and soil was reduced by soil moisture. The results of this study provide effective insights into the estimation of winter wheat residue cover under different soil moisture conditions, and provide a useful reference for the study of remote sensing estimation of crop residue cover in a large region. The dimidiate pixel model using NDTI can also be used to estimate non-photosynthetic vegetation cover of natural vegetation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信