Deactivating mutations in the catalytic site of a companion serine carboxypeptidase-like acyltransferase enhance catechin galloylation in Camellia plants

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Xiangxiang Chen, Xue Zhang, Yue Zhao, Liping Gao, Zhihui Wang, Yanlei Su, Lingyun Zhang, Tao Xia, Yajun Liu
{"title":"Deactivating mutations in the catalytic site of a companion serine carboxypeptidase-like acyltransferase enhance catechin galloylation in Camellia plants","authors":"Xiangxiang Chen, Xue Zhang, Yue Zhao, Liping Gao, Zhihui Wang, Yanlei Su, Lingyun Zhang, Tao Xia, Yajun Liu","doi":"10.1093/hr/uhae343","DOIUrl":null,"url":null,"abstract":"Galloylated flavan-3-ols are key quality and health-related compounds in tea plants of Camellia section Thea. Camellia ptilophylla and Camellia sinensis are two representative species known for their high levels of galloylated flavan-3-ols. Building on our knowledge of galloyl catechin biosynthesis in C. sinensis, we now focus on the biosynthesis of galloylated phenolics in C. ptilophylla, aiming to elucidate the mechanisms underlying the high accumulation of these compounds in Camellia species. The phenolic compounds in C. ptilophylla were identified and quantified using chromatographic and colorimetric methods. Genes involved in polyphenol galloylation were identified by correlating gene expression with the accumulation of galloylated phenolics across 18 additional Camellia species and 1 related species using Weighted Gene Co-expression Network Analysis. Key findings include the co-expression of SCPL4/2 and SCPL5 subgroup enzymes as crucial for galloylation of catechins, while SCPL3 and SCPL8 showed enzymatic activity related to hydrolyzable tannin synthesis. Variations in the amino acid sequences of SCPL5, particularly in the catalytic triad (T-D-Y vs. S-D-H) observed in C. ptilophylla and C. sinensis, were found to significantly affect enzymatic activity and EGCG production. In conclusion, this research provides important insights into the metabolic pathways of C. ptilophylla, emphasizing the critical role of SCPL enzymes in shaping the phenolic profile within the section Thea. The findings have significant implications for the cultivation and breeding of tea plants with optimized phenolic characteristics.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"47 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae343","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Galloylated flavan-3-ols are key quality and health-related compounds in tea plants of Camellia section Thea. Camellia ptilophylla and Camellia sinensis are two representative species known for their high levels of galloylated flavan-3-ols. Building on our knowledge of galloyl catechin biosynthesis in C. sinensis, we now focus on the biosynthesis of galloylated phenolics in C. ptilophylla, aiming to elucidate the mechanisms underlying the high accumulation of these compounds in Camellia species. The phenolic compounds in C. ptilophylla were identified and quantified using chromatographic and colorimetric methods. Genes involved in polyphenol galloylation were identified by correlating gene expression with the accumulation of galloylated phenolics across 18 additional Camellia species and 1 related species using Weighted Gene Co-expression Network Analysis. Key findings include the co-expression of SCPL4/2 and SCPL5 subgroup enzymes as crucial for galloylation of catechins, while SCPL3 and SCPL8 showed enzymatic activity related to hydrolyzable tannin synthesis. Variations in the amino acid sequences of SCPL5, particularly in the catalytic triad (T-D-Y vs. S-D-H) observed in C. ptilophylla and C. sinensis, were found to significantly affect enzymatic activity and EGCG production. In conclusion, this research provides important insights into the metabolic pathways of C. ptilophylla, emphasizing the critical role of SCPL enzymes in shaping the phenolic profile within the section Thea. The findings have significant implications for the cultivation and breeding of tea plants with optimized phenolic characteristics.
伴随丝氨酸羧肽酶样酰基转移酶的催化位点失活突变增强了茶花植物中儿茶素的没食子化
没食子酸黄烷-3-醇是茶树茶属植物中品质和健康相关的关键化合物。茶树和茶树是两种具有代表性的物种,以其高水平的没食子酸黄烷-3-醇而闻名。基于我们对山茶中没食子酸儿茶素生物合成的了解,我们现在将重点放在山茶中没食子酸儿茶素的生物合成上,旨在阐明这些化合物在山茶物种中高积累的机制。采用色谱法和比色法对太子参中酚类化合物进行了鉴定和定量。利用加权基因共表达网络分析方法,在另外18个山茶种和1个近缘种中,通过基因表达与没食子酸积累的相关性,鉴定了多酚没食子酸积累的相关基因。主要发现包括SCPL4/2和SCPL5亚群酶的共表达,对儿茶素的没食子酰化至关重要,而SCPL3和SCPL8显示了与可水解单宁合成相关的酶活性。SCPL5氨基酸序列的变化,特别是在C. ptinlophylla和C. sinensis中观察到的催化三联体(T-D-Y vs. S-D-H),被发现显著影响酶活性和EGCG的产生。综上所述,本研究提供了重要的见解,以了解C. ptinlophylla的代谢途径,强调了SCPL酶在塑造茶段酚谱中的关键作用。研究结果对优化茶树酚类特性的栽培和选育具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
文献相关原料
公司名称
产品信息
索莱宝
water-insoluble polyvinylpolypyrrolidone
索莱宝
water-insoluble polyvinylpolypyrrolidone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信