Mining the cucumber core collection: Phenotypic and genetic characterization of morphological diversity for fruit quality characteristics

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Ying-Chen Lin, Yiqun Weng, Zhangjun Fei, Rebecca Grumet
{"title":"Mining the cucumber core collection: Phenotypic and genetic characterization of morphological diversity for fruit quality characteristics","authors":"Ying-Chen Lin, Yiqun Weng, Zhangjun Fei, Rebecca Grumet","doi":"10.1093/hr/uhae340","DOIUrl":null,"url":null,"abstract":"Commercial value of cucumber is primarily driven by fruit quality. However, breeding goals frequently focus on production constraints caused by biotic and abiotic stresses. As sources of resistances are often present in unadapted germplasm, we sought to provide morphological and genetic information characterizing the diversity of fruit quality traits present in the CucCAP cucumber core collection. These 388 accessions representing >96% of the genetic diversity for cucumber present in the U.S. National Plant Germplasm System harbor important sources of resistances and extensive morphological diversity. Data were collected for skin color, length/diameter ratio (L/D), tapering, curvature, and spine density for young fruits [5-7 days post-pollination (dpp)], and length, diameter, L/D, skin color, netting, seed cavity size, flesh thickness, hollowness, and flesh color for mature fruits (30-40 dpp. Significant associations of SNPs with each trait were identified from genome-wide association studies (GWAS). In several cases, QTL for highly correlated traits were closely clustered. Principal component analysis, driven primarily by the highly correlated traits of fruit length, young and mature L/D ratios, and curvature showed a clear divergence of East Asian accessions. Significant SNPs contributing to the longest fruits, including development-stage specific QTL, were distributed across multiple chromosomes, indicating broad genomic effects of selection. Many of the SNPs identified for the various morphological traits were in close vicinity to previously identified fruit trait QTL and candidate genes, while several novel genes potentially important for these traits were also identified.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"19 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae340","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Commercial value of cucumber is primarily driven by fruit quality. However, breeding goals frequently focus on production constraints caused by biotic and abiotic stresses. As sources of resistances are often present in unadapted germplasm, we sought to provide morphological and genetic information characterizing the diversity of fruit quality traits present in the CucCAP cucumber core collection. These 388 accessions representing >96% of the genetic diversity for cucumber present in the U.S. National Plant Germplasm System harbor important sources of resistances and extensive morphological diversity. Data were collected for skin color, length/diameter ratio (L/D), tapering, curvature, and spine density for young fruits [5-7 days post-pollination (dpp)], and length, diameter, L/D, skin color, netting, seed cavity size, flesh thickness, hollowness, and flesh color for mature fruits (30-40 dpp. Significant associations of SNPs with each trait were identified from genome-wide association studies (GWAS). In several cases, QTL for highly correlated traits were closely clustered. Principal component analysis, driven primarily by the highly correlated traits of fruit length, young and mature L/D ratios, and curvature showed a clear divergence of East Asian accessions. Significant SNPs contributing to the longest fruits, including development-stage specific QTL, were distributed across multiple chromosomes, indicating broad genomic effects of selection. Many of the SNPs identified for the various morphological traits were in close vicinity to previously identified fruit trait QTL and candidate genes, while several novel genes potentially important for these traits were also identified.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信