{"title":"A chromosome-level reference genome facilitates the discovery of clubroot resistant gene Crr5 in Chinese cabbage","authors":"Shuangjuan Yang, Xiangfeng Wang, Zhaojun Wang, Wenjing Zhang, Henan Su, Xiaochun Wei, Yanyan Zhao, Zhiyong Wang, Xiaowei Zhang, Li Guo, Yuxiang Yuan","doi":"10.1093/hr/uhae338","DOIUrl":null,"url":null,"abstract":"Brassica rapa includes a variety of important vegetable and oilseed crops, yet it is significantly challenged by clubroot disease. Notably, the majority of genotypes of B. rapa with published genomes exhibit high susceptibility to clubroot disease. The present study presents a high-quality chromosome-level sequence of the genome of the DH40 clubroot-resistant (CR) line, a doubled haploid line derived from the hybrid progeny of a European turnip (ECD01) and two lines of Chinese cabbage. The assembled genome spans 420.92 Mb, with a contig N50 size of 11.97 Mb. Comparative genomics studies revealed that the DH40 line is more closely related to the Chinese cabbage Chiifu than to the turnip ECD04. The DH40 genome provided direct reference and greatly facilitate the map-based cloning of the clubroot resistance gene Crr5, encoding a nucleotide-binding leucine-rich repeat (NLR) protein. Further functional analysis demonstrated that Crr5 confers clubroot resistance in both Chinese cabbage and transgenic Arabidopsis. It responds to inoculation with Plasmodiophora brassicae and is expressed in both roots and leaves. Subcellular localization shows that Crr5 is present in the nucleus. Notably, the TIR domain of Crr5 can autoactivate and trigger cell death. In addition, we developed two Crr5-specific KASP markers and showcased their successful application in breeding CR Chinese cabbage through marker-assisted selection. Overall, our research offers valuable resources for genetic and genomic studies in B. rapa and deepens our understanding of the molecular mechanisms underlying clubroot resistance against Plasmodiophora brassicae.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"40 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae338","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Brassica rapa includes a variety of important vegetable and oilseed crops, yet it is significantly challenged by clubroot disease. Notably, the majority of genotypes of B. rapa with published genomes exhibit high susceptibility to clubroot disease. The present study presents a high-quality chromosome-level sequence of the genome of the DH40 clubroot-resistant (CR) line, a doubled haploid line derived from the hybrid progeny of a European turnip (ECD01) and two lines of Chinese cabbage. The assembled genome spans 420.92 Mb, with a contig N50 size of 11.97 Mb. Comparative genomics studies revealed that the DH40 line is more closely related to the Chinese cabbage Chiifu than to the turnip ECD04. The DH40 genome provided direct reference and greatly facilitate the map-based cloning of the clubroot resistance gene Crr5, encoding a nucleotide-binding leucine-rich repeat (NLR) protein. Further functional analysis demonstrated that Crr5 confers clubroot resistance in both Chinese cabbage and transgenic Arabidopsis. It responds to inoculation with Plasmodiophora brassicae and is expressed in both roots and leaves. Subcellular localization shows that Crr5 is present in the nucleus. Notably, the TIR domain of Crr5 can autoactivate and trigger cell death. In addition, we developed two Crr5-specific KASP markers and showcased their successful application in breeding CR Chinese cabbage through marker-assisted selection. Overall, our research offers valuable resources for genetic and genomic studies in B. rapa and deepens our understanding of the molecular mechanisms underlying clubroot resistance against Plasmodiophora brassicae.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.