Conducting Polymer Transforms Hydrophobic Porous Membranes into Robust Gas Diffusion Layers in Electrochemical Applications

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hwiyoon Noh, Hyunki Yeo, Bryan W Boudouris, Brian M. Tackett
{"title":"Conducting Polymer Transforms Hydrophobic Porous Membranes into Robust Gas Diffusion Layers in Electrochemical Applications","authors":"Hwiyoon Noh, Hyunki Yeo, Bryan W Boudouris, Brian M. Tackett","doi":"10.1039/d4ee04163a","DOIUrl":null,"url":null,"abstract":"The increasing demand for sustainable chemical production due to strict regulations for carbon emission aligns with growing availability of solar and wind energy, making electrochemical manufacturing a viable route toward decarbonized chemical syntheses. Electrodes with gas diffusion layers (GDLs) critically enhance reaction efficiency for continuous-flow electrochemical reactors with liquid electrolytes fed with gaseous reactants, but they currently suffer from challenges like electrolyte flooding and poor long-term stability. Porous polytetrafluoroethylene (PTFE) membrane-based GDLs overcome some of these issues, but they require additional functionality to enable conductivity. Herein, we demonstrate a novel GDL structure, introducing a porous conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), onto a porous PTFE membrane. Compared to a carbon-based GDL, the PEDOT-coated PTFE GDL exhibited similar electrochemical performance with enhanced stability under industrially relevant conditions for the CO2 reduction reaction. PEDOT-coated PTFE GDL demonstrates remarkable resistance to electrolyte flooding, making it a promising candidate for various gas-fed electrocatalytic reactions.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"113 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04163a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for sustainable chemical production due to strict regulations for carbon emission aligns with growing availability of solar and wind energy, making electrochemical manufacturing a viable route toward decarbonized chemical syntheses. Electrodes with gas diffusion layers (GDLs) critically enhance reaction efficiency for continuous-flow electrochemical reactors with liquid electrolytes fed with gaseous reactants, but they currently suffer from challenges like electrolyte flooding and poor long-term stability. Porous polytetrafluoroethylene (PTFE) membrane-based GDLs overcome some of these issues, but they require additional functionality to enable conductivity. Herein, we demonstrate a novel GDL structure, introducing a porous conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), onto a porous PTFE membrane. Compared to a carbon-based GDL, the PEDOT-coated PTFE GDL exhibited similar electrochemical performance with enhanced stability under industrially relevant conditions for the CO2 reduction reaction. PEDOT-coated PTFE GDL demonstrates remarkable resistance to electrolyte flooding, making it a promising candidate for various gas-fed electrocatalytic reactions.
导电聚合物将疏水性多孔膜转化为电化学应用中的强大气体扩散层
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信