Yuanfang Li, Xiaoshu Lv, Yan Liu, Jie Yin, Ruimei Fang, Guangming Jiang, Zhehan Yang
{"title":"Efficient simultaneously quantitative and qualitative detection of multiple phenols using highly water-stable Co2+‐doped Cu-BTC as electrocatalyst","authors":"Yuanfang Li, Xiaoshu Lv, Yan Liu, Jie Yin, Ruimei Fang, Guangming Jiang, Zhehan Yang","doi":"10.1039/d4en00912f","DOIUrl":null,"url":null,"abstract":"Abstract: A rational design of water-stable and high-efficiency MOFs-based electrocatalysts thus achieving durable sensitive electrochemical sensors remains a great challenge. Herein, water-stable Co2+ doped-Cu2+ and 1,3,5-benzene tricarboxylic coordination polymers (Cu-BTC@Co) were designed to construct a sensitive and durable electrochemical sensor for simultaneously detecting multiple hazardous phenols. Combining the Mulliken charges of H2O and BTC, the mechanism of the water-stability of Cu-BTC@Co was discussed, which is owing to the intermolecular force (Cu-BTC and Cu-OH2) and the intramolecular force (π-π bond, COO-H2O hydrogen bond), making Cu2+ coordination to BTC being much stronger than water, thereby the Cu-BTC@Co with strong stability in the water environment was achieved. Moreover, doping Co2+ into Cu-BTC not only improves the electron transfer efficiency of Cu-BTC but also enhances the catalytical efficiency of Cu-BTC. Combining the high-efficiency selective catalysis of Cu-BTC@Co and oxidation potential difference among multiple phenols, the Cu-BTC@Co sensor can simultaneously quantitative and qualitative detection of multiple phenols with good multicycle sensing performance. This article clarifies the mechanism of synthesizing water-stable MOFs and promotes the application of MOFs-based sensors in the quantitative analysis of water pollutants.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"21 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00912f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: A rational design of water-stable and high-efficiency MOFs-based electrocatalysts thus achieving durable sensitive electrochemical sensors remains a great challenge. Herein, water-stable Co2+ doped-Cu2+ and 1,3,5-benzene tricarboxylic coordination polymers (Cu-BTC@Co) were designed to construct a sensitive and durable electrochemical sensor for simultaneously detecting multiple hazardous phenols. Combining the Mulliken charges of H2O and BTC, the mechanism of the water-stability of Cu-BTC@Co was discussed, which is owing to the intermolecular force (Cu-BTC and Cu-OH2) and the intramolecular force (π-π bond, COO-H2O hydrogen bond), making Cu2+ coordination to BTC being much stronger than water, thereby the Cu-BTC@Co with strong stability in the water environment was achieved. Moreover, doping Co2+ into Cu-BTC not only improves the electron transfer efficiency of Cu-BTC but also enhances the catalytical efficiency of Cu-BTC. Combining the high-efficiency selective catalysis of Cu-BTC@Co and oxidation potential difference among multiple phenols, the Cu-BTC@Co sensor can simultaneously quantitative and qualitative detection of multiple phenols with good multicycle sensing performance. This article clarifies the mechanism of synthesizing water-stable MOFs and promotes the application of MOFs-based sensors in the quantitative analysis of water pollutants.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis