Large-Area Aligned Growth of Low-Symmetry 2D ReS2 on a High-Symmetry Surface

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-10 DOI:10.1021/acsnano.4c14162
Honglin Chen, Shan Jiang, Lingli Huang, Ping Man, Qingming Deng, Jiong Zhao, Thuc Hue Ly
{"title":"Large-Area Aligned Growth of Low-Symmetry 2D ReS2 on a High-Symmetry Surface","authors":"Honglin Chen, Shan Jiang, Lingli Huang, Ping Man, Qingming Deng, Jiong Zhao, Thuc Hue Ly","doi":"10.1021/acsnano.4c14162","DOIUrl":null,"url":null,"abstract":"The large-scale preparation of two-dimensional (2D) materials is pivotal in unlocking their extensive potential for next-generation semiconductor device applications. Wafer-scale single crystals of a high-symmetry 2D material (e.g., graphene and molybdenum disulfide) can be achieved by seamlessly stitching the aligned domains. However, achieving the alignment of low-symmetry 2D materials remains a great challenge and is rarely reported. Rhenium disulfide (ReS<sub>2</sub>), one of the low-symmetry 2D materials, shows considerable promise for optoelectronics, especially polarization-sensitive applications. Here, we report large-area chemical vapor deposition synthesis of highly oriented, low-symmetry monolayer ReS<sub>2</sub> flakes on a high-symmetry Au(111) surface, followed by seamless stitching into a centimeter-scale continuous 2D film. Cross-sectional scanning transmission electron microscopy reveals that the aligned monolayer ReS<sub>2</sub> flakes are guided by step edges on Au(111) surfaces along the [011̅] direction. Additionally, 2D ReS<sub>2</sub> can flatten Au surfaces during its growth through surface step bunching. The growth of the ReS<sub>2</sub> monolayer demonstrates its ability to extend across Au surface steps and facets. Thus, we have established a reliable and robust synthesis route that accommodates different surface roughness conditions. The aligned and scalable film growth of low-symmetry 2D ReS<sub>2</sub> significantly contributes to the in-depth understanding of epitaxial growth mechanisms for low-symmetry 2D materials, holding promise for advancing their future applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"77 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14162","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale preparation of two-dimensional (2D) materials is pivotal in unlocking their extensive potential for next-generation semiconductor device applications. Wafer-scale single crystals of a high-symmetry 2D material (e.g., graphene and molybdenum disulfide) can be achieved by seamlessly stitching the aligned domains. However, achieving the alignment of low-symmetry 2D materials remains a great challenge and is rarely reported. Rhenium disulfide (ReS2), one of the low-symmetry 2D materials, shows considerable promise for optoelectronics, especially polarization-sensitive applications. Here, we report large-area chemical vapor deposition synthesis of highly oriented, low-symmetry monolayer ReS2 flakes on a high-symmetry Au(111) surface, followed by seamless stitching into a centimeter-scale continuous 2D film. Cross-sectional scanning transmission electron microscopy reveals that the aligned monolayer ReS2 flakes are guided by step edges on Au(111) surfaces along the [011̅] direction. Additionally, 2D ReS2 can flatten Au surfaces during its growth through surface step bunching. The growth of the ReS2 monolayer demonstrates its ability to extend across Au surface steps and facets. Thus, we have established a reliable and robust synthesis route that accommodates different surface roughness conditions. The aligned and scalable film growth of low-symmetry 2D ReS2 significantly contributes to the in-depth understanding of epitaxial growth mechanisms for low-symmetry 2D materials, holding promise for advancing their future applications.

Abstract Image

高对称性表面上低对称性二维 ReS2 的大面积对齐生长
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信