Gold-Catalysed 1,2-Difunctionalisation: Sulfoximines as N- and O-Transfer Reagents

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexandra V. Mackenroth, Patrick W. Antoni, Farshad Shiri, Christoph Bendel, Christian Mayer, Jürgen H. Gross, Frank Rominger, Matthias Rudolph, Alireza Ariafard, A. Stephen K. Hashmi
{"title":"Gold-Catalysed 1,2-Difunctionalisation: Sulfoximines as N- and O-Transfer Reagents","authors":"Alexandra V. Mackenroth, Patrick W. Antoni, Farshad Shiri, Christoph Bendel, Christian Mayer, Jürgen H. Gross, Frank Rominger, Matthias Rudolph, Alireza Ariafard, A. Stephen K. Hashmi","doi":"10.1002/anie.202420360","DOIUrl":null,"url":null,"abstract":"Among the nucleophilic oxidants employed in the gold-catalysed oxidation of alkynes, sulphur-based reagents have played a substantial role since the beginning, granting access to the respective gold carbene intermediates. Herein, we describe the first example of the substance class of sulfoximines being used as atom transfer reagents to alkynes in gold catalysis. Based on the transformation of N-(2-alkynylphenyl) sulfoximines to 3H-indol-3-ones, it is demonstrated that the sulfoximine functionality is capable of selectively transferring first its nitrogen moiety to the alkyne, forming the α-imino gold carbene, which is then oxidised by the released sulfoxide moiety in a second step via a pseudo-intramolecular mechanism – a distinctive feature that differentiates this work mechanistically from earlier studies. A combination of extensive experimental and theoretical studies provides evidence for this mechanistic rationale. As no external reagents for the 1,2-difunctionalisation of the alkyne unit are required, a wide variety of functional groups are tolerated in the transformation, affording the desired 3H-indol-3-ones in mostly good yields. It was further also showcased that it is possible to combine our methodology with additional transformations of the 3H-indol-3-one core in one-pot procedures, allowing facile access to C2-quaternary indolin-3-one structures.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"10 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Among the nucleophilic oxidants employed in the gold-catalysed oxidation of alkynes, sulphur-based reagents have played a substantial role since the beginning, granting access to the respective gold carbene intermediates. Herein, we describe the first example of the substance class of sulfoximines being used as atom transfer reagents to alkynes in gold catalysis. Based on the transformation of N-(2-alkynylphenyl) sulfoximines to 3H-indol-3-ones, it is demonstrated that the sulfoximine functionality is capable of selectively transferring first its nitrogen moiety to the alkyne, forming the α-imino gold carbene, which is then oxidised by the released sulfoxide moiety in a second step via a pseudo-intramolecular mechanism – a distinctive feature that differentiates this work mechanistically from earlier studies. A combination of extensive experimental and theoretical studies provides evidence for this mechanistic rationale. As no external reagents for the 1,2-difunctionalisation of the alkyne unit are required, a wide variety of functional groups are tolerated in the transformation, affording the desired 3H-indol-3-ones in mostly good yields. It was further also showcased that it is possible to combine our methodology with additional transformations of the 3H-indol-3-one core in one-pot procedures, allowing facile access to C2-quaternary indolin-3-one structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信