{"title":"Chiral Nanomaterials as Vaccine Adjuvants: A New Horizon in Immunotherapy","authors":"Kaixuan Wang, Hongshuang Wang, Xiaohui Wang","doi":"10.1039/d4nr03542a","DOIUrl":null,"url":null,"abstract":"Chiral nanomaterials are emerging as a promising class of vaccine adjuvants with the potential to significantly enhance vaccine efficacy, especially in the context of cancer immunotherapy. These nanomaterials can trigger enantioselective immune responses, enabling more precise and efficient vaccines. Their distinctive optical, electronic, and catalytic characteristics, along with the ability to be engineered with specific physical and chemical properties, make them highly suitable for next-generation vaccines development. Chiral nanomaterials can enhance antigen presentation, modulate the tumor microenvironment, and boost the efficacy of immune responses, particularly against complex diseases such as cancer. Nevertheless, significant challenges remain, such as ensuring the reproducibility of their synthesis, conducting thorough safety assessments, and gaining a deeper understanding of their interactions with the immune system. Continued research and development are crucial to unlocking the potential of chiral nanomaterials in vaccine technology, thus paving the way for more effective, targeted, and personalized immunotherapies.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"38 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03542a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral nanomaterials are emerging as a promising class of vaccine adjuvants with the potential to significantly enhance vaccine efficacy, especially in the context of cancer immunotherapy. These nanomaterials can trigger enantioselective immune responses, enabling more precise and efficient vaccines. Their distinctive optical, electronic, and catalytic characteristics, along with the ability to be engineered with specific physical and chemical properties, make them highly suitable for next-generation vaccines development. Chiral nanomaterials can enhance antigen presentation, modulate the tumor microenvironment, and boost the efficacy of immune responses, particularly against complex diseases such as cancer. Nevertheless, significant challenges remain, such as ensuring the reproducibility of their synthesis, conducting thorough safety assessments, and gaining a deeper understanding of their interactions with the immune system. Continued research and development are crucial to unlocking the potential of chiral nanomaterials in vaccine technology, thus paving the way for more effective, targeted, and personalized immunotherapies.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.