Superdiffusive Thermal Transport in Polymer-Grafted Nanoparticle Melts

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bohai Liu, Mayank Jhalaria, Eric Ruzicka, Brian C. Benicewicz, Sanat K. Kumar, George Fytas, Xiangfan Xu
{"title":"Superdiffusive Thermal Transport in Polymer-Grafted Nanoparticle Melts","authors":"Bohai Liu, Mayank Jhalaria, Eric Ruzicka, Brian C. Benicewicz, Sanat K. Kumar, George Fytas, Xiangfan Xu","doi":"10.1103/physrevlett.133.248101","DOIUrl":null,"url":null,"abstract":"In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ</a:mi>∼</a:mo>L</a:mi></a:mrow>α</a:mi></a:mrow></a:msup>(</a:mo>α</a:mi>&gt;</a:mo>0</a:mn>)</a:mo></a:mrow></a:math>, but there is a long-standing debate on the value <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>α</e:mi></e:math>. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius. For long chains (chain length <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>N</g:mi><g:mo>≥</g:mo><g:mn>9</g:mn><g:mn>4</g:mn><g:mn>5</g:mn></g:mrow></g:math>), the experimental <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>κ</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mi>N</i:mi><i:mo stretchy=\"false\">)</i:mo></i:mrow></i:math> of GNP melts decreases with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>N</m:mi></m:math>, i.e., polymer concentration. For <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:mi>N</o:mi><o:mo>&lt;</o:mo><o:mn>9</o:mn><o:mn>4</o:mn><o:mn>5</o:mn></o:mrow></o:math>, however, <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:mi>κ</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mi>N</q:mi><q:mo stretchy=\"false\">)</q:mo></q:mrow></q:math> unexpectedly increases with <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>N</u:mi></u:math> with a maximum near <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mi>N</w:mi><w:mo>∼</w:mo><w:mn>9</w:mn><w:mn>4</w:mn><w:mn>5</w:mn></w:mrow></w:math>. For these systems, the extensional free energy per polymer chain is predicted to be maximized near <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:msub><y:mrow><y:mi>N</y:mi></y:mrow><y:mrow><y:mi>max</y:mi></y:mrow></y:msub><y:mo>≈</y:mo><y:mn>9</y:mn><y:mn>4</y:mn><y:mn>0</y:mn></y:mrow></y:math> for σ</ab:mi>≈</ab:mo>0.4</ab:mn>7</ab:mn></ab:mtext></ab:mtext>chains</ab:mi>/</ab:mo>nm</ab:mi></ab:mrow>2</ab:mn></ab:mrow></ab:msup></ab:mrow></ab:math>, which indicates the dominance of extended conformations at short <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>N</cb:mi></cb:math> and Gaussian-like conformation for longer <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>N</eb:mi></eb:math>. In the former regime, the thermal conductivity of extended polymer chains increases with <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>N</gb:mi></gb:math> and follows <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mrow><ib:msub><ib:mrow><ib:mi>κ</ib:mi></ib:mrow><ib:mrow><ib:mi mathvariant=\"normal\">p</ib:mi></ib:mrow></ib:msub><ib:mo>∼</ib:mo><ib:msubsup><ib:mrow><ib:mi>N</ib:mi></ib:mrow><ib:mrow><ib:mi>dry</ib:mi></ib:mrow><ib:mrow><ib:mn>0.46</ib:mn><ib:mo>±</ib:mo><ib:mn>0.02</ib:mn></ib:mrow></ib:msubsup></ib:mrow></ib:math>, which provides experimental evidence of a novel class of superdiffusive thermal transport with <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mrow><lb:mi>α</lb:mi><lb:mo>=</lb:mo><lb:mn>1</lb:mn><lb:mo>/</lb:mo><lb:mn>2</lb:mn></lb:mrow></lb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"119 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.248101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼Lα(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius. For long chains (chain length N945), the experimental κ(N) of GNP melts decreases with N, i.e., polymer concentration. For N<945, however, κ(N) unexpectedly increases with N with a maximum near N945. For these systems, the extensional free energy per polymer chain is predicted to be maximized near Nmax940 for σ≈0.47chains/nm2, which indicates the dominance of extended conformations at short N and Gaussian-like conformation for longer N. In the former regime, the thermal conductivity of extended polymer chains increases with N and follows κpNdry0.46±0.02, which provides experimental evidence of a novel class of superdiffusive thermal transport with α=1/2. Published by the American Physical Society 2024
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信