Bohai Liu, Mayank Jhalaria, Eric Ruzicka, Brian C. Benicewicz, Sanat K. Kumar, George Fytas, Xiangfan Xu
{"title":"Superdiffusive Thermal Transport in Polymer-Grafted Nanoparticle Melts","authors":"Bohai Liu, Mayank Jhalaria, Eric Ruzicka, Brian C. Benicewicz, Sanat K. Kumar, George Fytas, Xiangfan Xu","doi":"10.1103/physrevlett.133.248101","DOIUrl":null,"url":null,"abstract":"In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ</a:mi>∼</a:mo>L</a:mi></a:mrow>α</a:mi></a:mrow></a:msup>(</a:mo>α</a:mi>></a:mo>0</a:mn>)</a:mo></a:mrow></a:math>, but there is a long-standing debate on the value <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>α</e:mi></e:math>. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius. For long chains (chain length <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>N</g:mi><g:mo>≥</g:mo><g:mn>9</g:mn><g:mn>4</g:mn><g:mn>5</g:mn></g:mrow></g:math>), the experimental <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>κ</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mi>N</i:mi><i:mo stretchy=\"false\">)</i:mo></i:mrow></i:math> of GNP melts decreases with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>N</m:mi></m:math>, i.e., polymer concentration. For <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:mi>N</o:mi><o:mo><</o:mo><o:mn>9</o:mn><o:mn>4</o:mn><o:mn>5</o:mn></o:mrow></o:math>, however, <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:mi>κ</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mi>N</q:mi><q:mo stretchy=\"false\">)</q:mo></q:mrow></q:math> unexpectedly increases with <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>N</u:mi></u:math> with a maximum near <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mrow><w:mi>N</w:mi><w:mo>∼</w:mo><w:mn>9</w:mn><w:mn>4</w:mn><w:mn>5</w:mn></w:mrow></w:math>. For these systems, the extensional free energy per polymer chain is predicted to be maximized near <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:msub><y:mrow><y:mi>N</y:mi></y:mrow><y:mrow><y:mi>max</y:mi></y:mrow></y:msub><y:mo>≈</y:mo><y:mn>9</y:mn><y:mn>4</y:mn><y:mn>0</y:mn></y:mrow></y:math> for σ</ab:mi>≈</ab:mo>0.4</ab:mn>7</ab:mn></ab:mtext></ab:mtext>chains</ab:mi>/</ab:mo>nm</ab:mi></ab:mrow>2</ab:mn></ab:mrow></ab:msup></ab:mrow></ab:math>, which indicates the dominance of extended conformations at short <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>N</cb:mi></cb:math> and Gaussian-like conformation for longer <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>N</eb:mi></eb:math>. In the former regime, the thermal conductivity of extended polymer chains increases with <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>N</gb:mi></gb:math> and follows <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mrow><ib:msub><ib:mrow><ib:mi>κ</ib:mi></ib:mrow><ib:mrow><ib:mi mathvariant=\"normal\">p</ib:mi></ib:mrow></ib:msub><ib:mo>∼</ib:mo><ib:msubsup><ib:mrow><ib:mi>N</ib:mi></ib:mrow><ib:mrow><ib:mi>dry</ib:mi></ib:mrow><ib:mrow><ib:mn>0.46</ib:mn><ib:mo>±</ib:mo><ib:mn>0.02</ib:mn></ib:mrow></ib:msubsup></ib:mrow></ib:math>, which provides experimental evidence of a novel class of superdiffusive thermal transport with <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mrow><lb:mi>α</lb:mi><lb:mo>=</lb:mo><lb:mn>1</lb:mn><lb:mo>/</lb:mo><lb:mn>2</lb:mn></lb:mrow></lb:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"119 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.248101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to normal diffusion processes, thermal conduction in one-dimensional systems is anomalous. The thermal conductivity is found to vary with the length as κ∼Lα(α>0), but there is a long-standing debate on the value α. Here, we present a canonical example of this behavior in polymer-grafted spherical nanoparticle (GNP) melts at fixed grafting density and nanoparticle radius. For long chains (chain length N≥945), the experimental κ(N) of GNP melts decreases with N, i.e., polymer concentration. For N<945, however, κ(N) unexpectedly increases with N with a maximum near N∼945. For these systems, the extensional free energy per polymer chain is predicted to be maximized near Nmax≈940 for σ≈0.47chains/nm2, which indicates the dominance of extended conformations at short N and Gaussian-like conformation for longer N. In the former regime, the thermal conductivity of extended polymer chains increases with N and follows κp∼Ndry0.46±0.02, which provides experimental evidence of a novel class of superdiffusive thermal transport with α=1/2. Published by the American Physical Society2024
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks