Redox Active vs Redox Neutral in Ru/Pd-Catalyzed Sulfonylation: Theoretical Insights into Structure–Activity Relationship between Metal Centers and Regio-Selectivity

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC
Qingqing Lin, Huan Lv, Yu Lu, Chengkai Yang, Yan Yu, Zheyuan Liu
{"title":"Redox Active vs Redox Neutral in Ru/Pd-Catalyzed Sulfonylation: Theoretical Insights into Structure–Activity Relationship between Metal Centers and Regio-Selectivity","authors":"Qingqing Lin, Huan Lv, Yu Lu, Chengkai Yang, Yan Yu, Zheyuan Liu","doi":"10.1021/acs.joc.4c01940","DOIUrl":null,"url":null,"abstract":"The structure–activity relationship between the metal center and regio-selectivity is persistently a pivotal scientific issue. To address this, we select the 2-phenylpyridine sulfonylation reactions catalyzed by ruthenium and palladium as research subjects. An extensive theoretical study has been conducted on their reaction mechanisms, the sources of regio-selectivity, and the evolution of electronic structures. The distinct electronic structures lead to completely different catalytic mechanisms and electronic structure evolution processes for ruthenium and palladium. Ruthenium tends to form six-coordinate octahedral complexes, thus undergoing an inner-sphere redox active Ru(II)–Ru(III)–Ru(IV)–Ru(II) catalytic cycle. In contrast, palladium tends to form four-coordinate planar quadrilateral complexes, hence undergoing an outer-sphere redox neutral Pd(II) catalytic cycle. The distinct electronic structure evolution processes fundamentally differentiate the radical attack modes in the sulfonation process, thereby determining the regio-selectivity of the reaction. In the Ru-catalyzed system, the meta-selectivity arises mainly from a more stable Schrock carbene-type meta-intermediate. For the Pd-catalyzed system, the ortho-selectivity mainly comes from the stabilizing effect of the Pd(II) center on the single electron. This study provides novel insights into how the electronic structure of metal centers influences the reaction mechanism and selectivity, making a theoretical contribution to a deeper comprehension of the mechanism and regio-selectivity underlying aromatic functionalization reactions.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"28 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c01940","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The structure–activity relationship between the metal center and regio-selectivity is persistently a pivotal scientific issue. To address this, we select the 2-phenylpyridine sulfonylation reactions catalyzed by ruthenium and palladium as research subjects. An extensive theoretical study has been conducted on their reaction mechanisms, the sources of regio-selectivity, and the evolution of electronic structures. The distinct electronic structures lead to completely different catalytic mechanisms and electronic structure evolution processes for ruthenium and palladium. Ruthenium tends to form six-coordinate octahedral complexes, thus undergoing an inner-sphere redox active Ru(II)–Ru(III)–Ru(IV)–Ru(II) catalytic cycle. In contrast, palladium tends to form four-coordinate planar quadrilateral complexes, hence undergoing an outer-sphere redox neutral Pd(II) catalytic cycle. The distinct electronic structure evolution processes fundamentally differentiate the radical attack modes in the sulfonation process, thereby determining the regio-selectivity of the reaction. In the Ru-catalyzed system, the meta-selectivity arises mainly from a more stable Schrock carbene-type meta-intermediate. For the Pd-catalyzed system, the ortho-selectivity mainly comes from the stabilizing effect of the Pd(II) center on the single electron. This study provides novel insights into how the electronic structure of metal centers influences the reaction mechanism and selectivity, making a theoretical contribution to a deeper comprehension of the mechanism and regio-selectivity underlying aromatic functionalization reactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Organic Chemistry
Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信