Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, Bowei Dong, June Sang Lee, Mengyun Wang, Yi Zhang, Francesca Parmigiani, Harish Bhaskaran
{"title":"Energy-Efficient Integrated Electro-Optic Memristors","authors":"Yuhan He, Nikolaos Farmakidis, Samarth Aggarwal, Bowei Dong, June Sang Lee, Mengyun Wang, Yi Zhang, Francesca Parmigiani, Harish Bhaskaran","doi":"10.1021/acs.nanolett.4c04567","DOIUrl":null,"url":null,"abstract":"Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical–optical functionality that bridges the efficiency of electronics and the bandwidth of photonics. However, efficient, scalable, and CMOS-compatible implementations of electro-optic memristors are still lacking. Here, we devise electro-optic memristors by structuring the phase-change material as a nanoscale constriction, geometrically confining the electrically generated heat profile to overlap with the optical field, thus achieving programmability and readability in both the electrical and optical domains. We demonstrate sub-10 pJ electrical switching energy and a high electro-optical modulation efficiency of 0.15 nJ/dB. Our work opens up opportunities for high-performance and energy-efficient integrated electro-optic neuromorphic computing.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical–optical functionality that bridges the efficiency of electronics and the bandwidth of photonics. However, efficient, scalable, and CMOS-compatible implementations of electro-optic memristors are still lacking. Here, we devise electro-optic memristors by structuring the phase-change material as a nanoscale constriction, geometrically confining the electrically generated heat profile to overlap with the optical field, thus achieving programmability and readability in both the electrical and optical domains. We demonstrate sub-10 pJ electrical switching energy and a high electro-optical modulation efficiency of 0.15 nJ/dB. Our work opens up opportunities for high-performance and energy-efficient integrated electro-optic neuromorphic computing.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.